Fundamentos de Geometria Finsler

Benigno Oliveira Alves e Patrícia Marçal

VIII EPGMAT

24 de Novembro de 2023.

Relembrando: pré-geodésica e Geodésica

Seja F uma métrica pré-Finsler.

Uma curva suave $\gamma:(a,b)\to M$ é uma pré-geodésica se for ponto crítico do funcional comprimento, que é dado por

$$L(\beta) = \int_{a}^{b} F(\beta') dt$$

para curvas suaves por partes $\beta:(a,b)\to M$. Se adicionalmente $F(\gamma')=cte,\ \gamma$ é uma geodésica.

Seja B um campo magnético em \mathbb{R}^3 (divB=0). Em particular, existe campo J tal que

$$B = rot J$$
.

Chamaremos o par (\langle,\rangle,B) de estrutura magnética.

Seja B um campo magnético em \mathbb{R}^3 (divB=0). Em particular, existe campo J tal que

$$B = rot J$$
.

Chamaremos o par (\langle, \rangle, B) de estrutura magnética. Seja $\gamma: (a, b) \to \mathbb{R}^3$ uma partícula carregada de massa m e carga e.

Seja B um campo magnético em \mathbb{R}^3 (divB=0). Em particular, existe campo J tal que

$$B = rot J$$
.

Chamaremos o par (\langle,\rangle,B) de estrutura magnética. Seja $\gamma:(a,b)\to\mathbb{R}^3$ uma partícula carregada de massa m e carga e. A força de Lorentz é o campo anisotrópico

$$Y(v_p) = e(v \times B(p)).$$

Seja B um campo magnético em \mathbb{R}^3 (divB=0). Em particular, existe campo J tal que

$$B = rot J$$
.

Chamaremos o par (\langle,\rangle,B) de estrutura magnética. Seja $\gamma:(a,b)\to\mathbb{R}^3$ uma partícula carregada de massa m e carga e. A força de Lorentz é o campo anisotrópico

$$Y(v_p) = e(v \times B(p)).$$

Pela 2° Lei de Newton,

$$m\gamma''(t) = Y(\gamma'(t))$$

Seja B um campo magnético em \mathbb{R}^3 (divB=0). Em particular, existe campo J tal que

$$B = rot J$$
.

Chamaremos o par (\langle,\rangle,B) de estrutura magnética. Seja $\gamma:(a,b)\to\mathbb{R}^3$ uma partícula carregada de massa m e carga e. A força de Lorentz é o campo anisotrópico

$$Y(v_p) = e(v \times B(p)).$$

Pela 2° Lei de Newton,

$$m\gamma''(t) = Y(\gamma'(t))$$

Nesse caso, γ é uma Geodésica magnética de (\langle , \rangle, B) .

Geodésica Magnética e Geometria Finsler

Theorem

Uma curva $\gamma:(a,b)\to\mathbb{R}^3$ é geodésica magnética da estrutrua magnética (\langle,\rangle,B) com energia c se, e somente se, γ é uma pré-geodésica da métrica pré-Randers

$$R(v) = \sqrt{\langle v, v \rangle} + \frac{e}{\sqrt{2c}} \langle v, J \rangle.$$

onde e é a carga e $c = \langle \gamma', \gamma' \rangle$.

Geodésica Magnética e Geometria Finsler

Theorem

Uma curva $\gamma:(a,b)\to\mathbb{R}^3$ é geodésica magnética da estrutrua magnética (\langle,\rangle,B) com energia c se, e somente se, γ é uma pré-geodésica da métrica pré-Randers

$$R(v) = \sqrt{\langle v, v \rangle} + \frac{e}{\sqrt{2c}} \langle v, J \rangle.$$

onde e é a carga e $c = \langle \gamma', \gamma' \rangle$.

Demonstração.

Argumento de Cálculo Variacional...

Ortogonalidade

Sejam (V, F) espaço de Minkowski e g seu tensor fundamental. Dado L subespaço vetorial de V.

$$v$$
 é ortogonal a L \iff $g_v(v,u)=0 \ \forall u \in L$

O cone ortogonal a L é o conjunto dos vetores ortogonais a L.

Ortogonalidade

Sejam (V, F) espaço de Minkowski e g seu tensor fundamental. Dado L subespaço vetorial de V.

$$v$$
 é ortogonal a L \iff $g_v(v,u)=0 \ \forall u \in L$

O cone ortogonal a L é o conjunto dos vetores ortogonais a L.

Proposição

Se R é métrica Randers com data (\langle,\rangle,W) , então

$$g_{v}(v,u) = \langle v - W, u \rangle$$

 $\forall v \in \mathcal{I}_R$.

Ortogonalidade

Sejam (V, F) espaço de Minkowski e g seu tensor fundamental. Dado L subespaço vetorial de V.

$$v$$
 é ortogonal a L \iff $g_v(v,u)=0 \ \forall u \in L$

O cone ortogonal a L é o conjunto dos vetores ortogonais a L.

Proposição

Se R é métrica Randers com data (\langle,\rangle,W) , então

$$g_{v}(v,u) = \langle v - W, u \rangle$$

 $\forall v \in \mathcal{I}_R$. Em particular, $v \in \mathcal{I}_R$ é F-ortogonal a L sse v - W é $\|.\|$ -ortogonal a L.

O gradiente de uma função suave f é um campo vetorial dado implicitamente por

$$g_{\nabla f(p)}(\nabla f(p), u) = df_p(u), \ \forall u \in T_p V.$$

O gradiente de uma função suave f é um campo vetorial dado implicitamente por

$$g_{\nabla f(p)}(\nabla f(p), u) = df_p(u), \ \forall u \in T_p V.$$

Risco de confusão: $\nabla^F f$

O gradiente de uma função suave f é um campo vetorial dado implicitamente por

$$g_{\nabla f(p)}(\nabla f(p), u) = df_p(u), \ \forall u \in T_p V.$$

Risco de confusão: $\nabla^F f$ Propriedades:

- 1. ∇f é F-ortogonal aos níveis regulares;
- 2. f cresce na direção de ∇f ; e
- 3. ∇f é a direção que f mais cresce.

Proposição

Se R é norma Randers com data de navegação (\langle,\rangle,W) , então

Proposição

Se R é norma Randers com data de navegação (\langle,\rangle,W) , então

(a)
$$\frac{\nabla^R f}{R(\nabla^R f)} = \frac{\nabla f}{\|\nabla f\|} + W$$

Proposição

Se R é norma Randers com data de navegação (\langle,\rangle,W) , então

(a)
$$\frac{\nabla^R f}{R(\nabla^R f)} = \frac{\nabla f}{\|\nabla f\|} + W$$

(b)
$$R(\nabla^R f) = ||\nabla f|| + df(W)$$
.

onde ∇f e $\widetilde{\nabla} f$ são o R-gradiente e o $\|.\|$ -grandiete de f resp.

Uma forma volume Finsleriana é uma aplicação que associa a cada métrica Finsler F uma forma volume ν^F tal que

Uma forma volume Finsleriana é uma aplicação que associa a cada métrica Finsler F uma forma volume ν^F tal que

1. F é a norma euclidiana $\implies \nu^F = dx_1 \wedge ... \wedge dx_n$

Uma forma volume Finsleriana é uma aplicação que associa a cada métrica Finsler F uma forma volume ν^F tal que

- 1. F é a norma euclidiana $\implies \nu^F = dx_1 \wedge ... \wedge dx_n$
- 2. $\varphi: (M, F) \to (N, \tilde{F}) \text{ com } F \leq \varphi^* \tilde{F} \implies \int_A \nu^F \leq \int_{\varphi(A)} \nu^{\tilde{F}}$

Uma forma volume Finsleriana é uma aplicação que associa a cada métrica Finsler F uma forma volume ν^F tal que

- 1. F é a norma euclidiana $\implies \nu^F = dx_1 \wedge ... \wedge dx_n$
- 2. $\varphi: (M, F) \to (N, \tilde{F}) \text{ com } F \leq \varphi^* \tilde{F} \implies \int_A \nu^F \leq \int_{\varphi(A)} \nu^{\tilde{F}}$
- 3. φ é isometria $\Longrightarrow \int_A \nu^F = \int_{\varphi(A)} \nu^{\tilde{F}}$

Uma forma volume Finsleriana é uma aplicação que associa a cada métrica Finsler F uma forma volume ν^F tal que

- 1. F é a norma euclidiana $\implies \nu^F = dx_1 \wedge ... \wedge dx_n$
- 2. $\varphi: (M, F) \to (N, \tilde{F}) \text{ com } F \leq \varphi^* \tilde{F} \implies \int_A \nu^F \leq \int_{\varphi(A)} \nu^{\tilde{F}}$
- 3. φ é isometria $\Longrightarrow \int_A \nu^F = \int_{\varphi(A)} \nu^{\tilde{F}}$

Teorema

Existe uma única forma volume Riemanniana.

Uma forma volume Finsleriana é uma aplicação que associa a cada métrica Finsler F uma forma volume ν^F tal que

- 1. F é a norma euclidiana $\implies \nu^F = dx_1 \wedge ... \wedge dx_n$
- 2. $\varphi: (M, F) \to (N, \tilde{F}) \text{ com } F \leq \varphi^* \tilde{F} \implies \int_A \nu^F \leq \int_{\varphi(A)} \nu^{\tilde{F}}$
- 3. φ é isometria $\Longrightarrow \int_A \nu^F = \int_{\varphi(A)} \nu^{\tilde{F}}$

Teorema

Existe uma única forma volume Riemanniana.

Cuidado! Em geral, não existe uma única forma volume Finsleriana.

Seja (M,F,ν) uma espaço m - Finsler, onde ν é uma forma volume Finsleriana.

Seja (M,F,ν) uma espaço m - Finsler, onde ν é uma forma volume Finsleriana. O laplaciano (não-Linear) de uma função suave f é a

função

$$\triangle f := div \nabla f$$

Seja (M,F,ν) uma espaço m - Finsler, onde ν é uma forma volume Finsleriana. O laplaciano (não-Linear) de uma função suave f é a

função

$$\triangle f := div \nabla f$$

Proposição Se R é uma métrica Randers com data de navegação (\langle,\rangle,W) e ν é uma forma volume Finsler, então

Seja (M,F,ν) uma espaço m - Finsler, onde ν é uma forma volume Finsleriana. O laplaciano (não-Linear) de uma função suave f é a

função

$$\triangle f := div \nabla f$$

Proposição Se R é uma métrica Randers com data de navegação (\langle,\rangle,W) e ν é uma forma volume Finsler, então

$$\begin{split} &\frac{1}{R(\nabla^R f)} \left[\triangle^R f - \textit{Hess}^R f \left(\frac{\nabla^R f}{R(\nabla^R f)}, \frac{\nabla^R f}{R(\nabla^R f)} \right) \right] = \\ &= \frac{1}{\|\nabla f\|} \left[\triangle f - \textit{Hess} \ f \left(\frac{\nabla f}{\|\nabla f\|}, \frac{\nabla f}{\|\nabla f\|} \right) \right] + \textit{div} \ \textit{W}. \end{split}$$

Obrigado!