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Basic definitions

Let B be a Banach space with norm || · ||.

Definition
A one-parameter family {T(t) : t ≥ 0} of bounded linear operators
on a Banach space B is called semi-group if

1. T(0) = I

2. T(t)T(s) = T(t + s) for all t, s ≥ 0

Moreover, a semigroup {T(t) : t ≥ 0} on B is said to be strongly
continuous if limt→0 T(t)f = f for every f ∈ B;
it is said to be a contraction semigroup if ||T(t)|| ≤ 1 for all t ≥ 0.
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A (possibly unbounded) linear operator L on B is a linear mapping
whose domain D(L) is a subspace of B and whose range R(L) lies
in B.

The graph of L is given by

G(L) := {(f , Lf ) : f ∈ D(L)} ⊂ B× B

The (infinitesimal) generator of a semigroup {T(t)} on B is the
linear operator defined by

Lf = lim
t→0

1

t
[T(t)f − f ] .

The domain D(L) of L is the subspace of all f ∈ B for which this
limit exists.
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Proposition
Let {T(t)} be a strongly contraction semigroup on B with
generator L.

1. If f ∈ B and t ≥ 0, then
∫ t
0 T(s)f ds ∈ D(L) and

T(t)f − f = L

∫ t

0
T(s)f ds;

2. If f ∈ D(L) and t ≥ 0, T(t)f ∈ D(L) and

d

dt
T(t)f = LT(t)f = T(t)Lf ;

3. If f ∈ D(L) and t ≥ 0, then

T(t)f − f =

∫ t

0
LT(s)f ds =

∫ t

0
T(s)Lf ds.
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A linear operator L on B is said to be dissipative if
||λf − Lf || ≥ λ||f || for every f ∈ D(L) and λ > 0.

Theorem[[4]Hille-Yosida]
A linear operator L on B is the generator of a strongly continuous
contraction semigroup on B if and only if

1. D(L) is dense in B;

2. L is dissipative;

3. R(λ− L) = B for some λ > 0.

Definition Let L be a closed linear operator on B. A subspace D
of D(L) is said to be a core for L if the closure of the restriction of
L to D is equal to L.
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Motivation

1. Let B be a banach space with norm || · || and consider a family
of Banach spaces Bn indexed by n ∈ N under the same norm
|| · ||.

2. Let πn : B → Bn the natural projection such that
supn ||πn||OP < ∞

3. We say that a sequence {fn : n ∈ N} with fn ∈ Bn for every
n ∈ N, converges to some f ∈ B (and write fn → f ) if
||πnf − fn|| → 0 as n → ∞.
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Theorem[[4]Trotter-Kato] For n = 1, 2, . . . , let {Tn(t) : t ≥ 0}
and {T(t) : t ≥ 0} be strongly contraction semigroups on Bn and
B with generators Ln and L. Let D be a core for L. Then, the
following are equivalent

1. For each f ∈ B, Tn(t)πnf → T(t)f for all t ≥ 0 uniformly on
bounded intervals.

2. For each f ∈ B, Tn(t)πnf → T(t)f for all t ≥ 0

3. For each f ∈ D, there exists fn ∈ D(Ln) for each n ≥ 1 such
that fn → f and Lnfn → Lf .

Also, to have the above theorem, we must assume that for
f ∈ D(L), πnT(t)f ∈ D(Ln) for all t ≥ 0 and that
Lf πnT(·)f : [0,∞) → Bn is continuous.



The question

It is possible to get the previous convergence but now with rates ?
Moreover, it is possible to carry such rate for convergence as

stochastic processes ?

And the answer is, we are working in this problem, but with the
conditions slightly changed
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Consider Bn,B,Tn(t),T(t), Ln, L and πn as the same as in the
previous Theorem and for each n ∈ N define Ξn : B → Bn a family
of linear operators.
For easy notation, denote An = πn + Ξn. Let us add some
hyphoteses

(H1) for each f ∈ D(L), the mapping LnAnT(·)f : [0,∞) → Bn is
integrable;

(H2) There exists functions s1(n) ↓ 0 and s2(n) ↓ 0 such that, for
any f ∈ D(L2)

||πnLf − Tn(t)Anf || ≤ s1(n)||Lf ||+ s2(n)||L2f ||

(H3) There exists functions r1(n) ↓ 0 and r2(n) ↓ 0 such that, for
any f ∈ D(L2)

||Ξnf || ≤ r1(n)||f ||+ r2(n)||Lf ||
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Trotter-Kato with estimates

Theorem Under the Hypothesis (H1) - (H3), for any f ∈ D(L2)
and for each t ≥ 0 in a compact interval, we have that

||πnT(t)f − T(t)πnf || ≤ r1(n)||f ||+max{s1(n), r1(n), r2(n)}||Lf ||
+max{s2(n), r2(n)}||L2||

Remark The Theorem above was solved joint with Milton Jara
when he was visiting Salvador last year.



Now we are interested in transport such convergence to Feller
processes. Therefore, we must define a suitable metric which
metrize the weak topology in the Skorohod space.

Denote by

(S, d) a locally compact Polish space, and denote by C0(S) the
space of the functions which vanish at infinity. Let {fk} be a dense

sequence of functions in C0(S), and define a metric in the space of
subprobability measure over S, d : M≤1(S)×M≤1(S) 7→ [0,∞)
given by

d(µ, ν) =
∞∑
k=0

1

2k

[∣∣∣∣∫ fk dµ−
∫

fk dν

∣∣∣∣ ∧ 1

]
(1)
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To state the Theorem, we must add some more Hypothesis.

(G1) For each fk of the dense family chosen to define the metric
must satisfy
a) fk ∈ D(L2)
b) The norms ||fk ||, ||Lfk || and ||L2fk || cannot grows faster
than 2k .

(G2) The Banach space B is C0(S) and πn is the restriction to a
subset Sn of S.



To state the Theorem, we must add some more Hypothesis.

(G1) For each fk of the dense family chosen to define the metric
must satisfy
a) fk ∈ D(L2)
b) The norms ||fk ||, ||Lfk || and ||L2fk || cannot grows faster
than 2k .

(G2) The Banach space B is C0(S) and πn is the restriction to a
subset Sn of S.



Theorem[Berry-Esseen estimates on the distance d and functional
CLT] Assume the hyphoteses (H1) - (H3) and (G1)-(G2). Let

{X (t) : t ≥ 0} and {Xn(t) : t ≥ 0} be the Feller processes on S
and Sn, respectively assumed to start at the same point. Fix some
t ∈ [0,T ] and denote by µ and µn the probability distributions on
S induced by X (t) and Xn(t), respectively. Then

d(µ, µn) ≲ max{s1(n), s2(n), r1(n), r2(n)}

Moreover, Xn ⇒ X in the space DS[0,∞)



Application

Let us fix some notation.
By B0(t) we denote the usual absorbed Brownian motion in [0,∞)
and by ∆ we denote a cemetery state.
Definition

A general Brownian motion on [0,∞) is a diffusion process W on
G = ∆ ∪ [0,∞) such that the absorbed process W (t ∧ T (0)),
t ≥ 0 on [0,∞) has the same distribution as B0 for any starting
point x ≥ 0.



The general Brownian motion is a continuous stochastic process
with boundary condition at zero which can be seen as a mixture of
the absorbed, reflected and killed Brownian motion

Theorem[[6]] Any general Brownian motion W on [0,∞) has

generator L = 1
2

d2

dx2
with corresponding domain

D(L) = {f ∈ C0(G) : af (0)− bf ′(0) +
1

2
cf ′′(0) = 0}

for some a, b, c ≥ 0, such that a+ b + c = 1 and a ̸= 1



The random walk with boundary conditions depending on
parameters A,B, α and β, is a Feller process on Gn = 1

nZ
+ ∪∆

denoted by Xn, with semigroup {Tn(t) : t ≥ 0} and generator Ln
indexed in n ∈ N acting on local functions f : Gn → [0,∞) as
follows

Lnf (x) =
∑

y ;|x−y |=1

ηnx ,y [f (y)− f (x)]

where

ηnx ,y =


B
nβ
, if x = 0andy = ∆;

A
nα , if x = 0andy = 1

n ;

1, otherwise.
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