Contribuição na teoria dos endomorfismos C^1 -robustamente transitivos com pontos críticos

Leydiane Ribeiro Campos Cristina Lizana e Elivan Lima

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística

23 de Novembro de 2023

Contexto

Seja $End^1(M)$ o espaço dos endomorfismos (não-invertíveis) $f: M \to M$ em uma variedade riemanianna compacta M munida com a topologia C^1 .

Objetivo

Exibir um exemplo de endomorfismo C^1 -robustamente transitivo em \mathbb{T}^4 admitindo pontos críticos, com decomposição dominada, mas não parcialmente hiperbólico.

Dizemos que o endomorfismo f é **transitivo** se existe um ponto em M tal que sua órbita positiva é densa em M. Além disso, dizemos que f é C^1 -robustamente transitivo se existe uma C^1 -vizinhança U de f tal que cada $g \in U$ é transitiva.

Resultados relacionados

No contexto de difeomorfismos, os primeiros exemplos de mapas C^1 -robustamente transitivos foram dados por Shub'71 em \mathbb{T}^4 e por Mañé'78 em \mathbb{T}^3 , ambos os exemplos exibem uma estrutura parcialmente hiperbólica.

Mañé'82 provou para difeomorfismos em superfícies que C^1 -robustamente transitivo implica hiperbolicidade e, em particular, a única superfície que admite tais sistemas é o 2-toro \mathbb{T}^2 .

Em dimensão três, Díaz, Pujals e Ures'99 provaram que a hiperbolicidade parcial é condição necessária para um mapa ser C^1 -robustamente transitivo.

Bonatti, Díaz e Pujals'03 provaram para difeomorfismos em variedades de dimensão superior que a decomposição dominada é uma condição necessária para um mapa ser C^1 -robustamente transitivo.

No contexto de difeomorfismo local, Lizana e Pujals'13 forneceram condições necessárias e suficientes para ter mapas C^1 -robustamente transitivos em \mathbb{T}^n ($n \geq 2$). Eles mostraram que a expansão do volume é uma condição C^1 -necessária.

Em particular, mostra-se que não é necessária qualquer "forma fraca de hiperbolicidade" para a existência de um difeomorfismo local C^1 -robustamente transitivo.

No contexto de endomorfismos exibindo pontos críticos, considere a classe de homotopia de uma dada matriz quadrada de tamanho dois por dois com coeficientes inteiros e dois autovalores reais e módulo de determinante maior ou igual a dois. Temos cinco possibilidades:

- classe expansora,
- classe hiperbólica,
- classe parcialmente hiperbólica,
- classe de grau zero,
- classe de homotetia.

Alguns exemplos em \mathbb{T}^2

classe hiperbólica	Berger e Rovella'13
classe parcialmente hiperbólica	Iglesias, Lizana e Portela'16
classe expansora	Lizana e Ranter'17
classe de grau zero	Lizana e Ranter'17
classe de homotetia	ainda não existe exemplo

Lizana e Ranter'19 provaram que, para superfícies, todo endomorfismo C^1 -robustamente transitivo exibindo pontos críticos é parcialmente hiperbólico. Além disso, eles provaram que as únicas superfícies que podem admitir este tipo de mapas são o 2-toro \mathbb{T}^2 ou a garrafa de Klein \mathbb{K}^2 . Portanto, não existem mapas C^1 -robustamente transitivos na esfera.

Morelli'20 construiu o primeiro exemplo, em dimensão n, de endomorfismo C^1 -robustamente transitivos exibindo pontos críticos, sendo n-1 direções expansoras.

Neste cenário para variedades de dimensão superior, Lizana, Potrie, Pujals e Ranter'22 provaram que todo endomorfismo C^1 -robustamente transitivo exibindo pontos críticos admite decomposição dominada.

Construção do exemplo

Nosso objetivo é exibir um endomorfismo C^1 -robustamente transitivo em \mathbb{T}^4 admitindo pontos críticos, com decomposição dominada, mas não parcialmente hiperbólica.

Construiremos o exemplo no espaço de recobrimento universal seguindo as ideias do exemplo Bonatti-Viana'00, fazendo a correspondente adaptação ao nosso cenário, e depois introduzindo artificialmente os pontos críticos.

Vamos começar com um endomorfismo linear Anosov $f_0: \mathbb{T}^4 \to \mathbb{T}^4$ induzido pelo mapa linear $A: \mathbb{R}^4 \to \mathbb{R}^4$ com $|det A| \geqslant 2$ e autovalores reais

$$0<\lambda_1<\lambda_2<\frac{1}{3}<1<3<\lambda_3<\lambda_4.$$

Considere a decomposição do fibrado tangente dada por

$$T\mathbb{T}^4 = E^{ss}_{f_0} \oplus E^s_{f_0} \oplus E^u_{f_0} \oplus E^{uu}_{f_0},$$

onde cada subfibrado é o autoespaço unidimensional Df_0 -invariante associado a cada autovalor, respectivamente. Suponha que $\mathcal{F}_{f_0}^{ss}$ seja minimal.

Considere V_1 aberto em \mathbb{T}^4 e $p \in V_1$. Realizamos uma deformação isotópica de A para obter um Derivado de Anosov (DA);

Realizamos uma deformação em uma pequena vizinhança de \bar{p}_1 de modo que os autovalores estáveis se tornem iguais;

Deformamos continuamente em uma pequena vizinhança em \bar{p}_1 para que os autovalores de contração se tornem autovalores de contração complexos e a decomposição do espaço tangente do novo mapa se torne $E^{cs} \oplus E^u$, onde cada subfibrado é bidimensional e E^{cs} é indecomponível. Faremos essa deformação através de uma matriz de rotação;

Em outro aberto V_2 e $q \in V_2$, repita as mesmas deformações das etapas anteriores, mas na direção fraca instável, em vez da direção fraca estável como antes. A decomposição do espaço tangente do novo mapa será $E^s \oplus E^{cu}$, onde cada subfibrado é bidimensional e E^{cu} é indecomponível;

Introduzimos artificialmente um conjunto crítico unidimensional em uma vizinhança suficientemente pequena V_3 disjunta de $V_1 \cup V_2$ na direção forte estável.

Robustamente transitivo

Primeiro, tome $U \subset \mathbb{T}^4$ aberto. Logo, existe $n \in \mathbb{N}$ tal que o disco centro-instável $D_{\epsilon}^{cu} \subset U$ satisfaz $D_r^{cu} \subset f^n(D_{\epsilon}^{cu})$.

Posteriormente, tome $V \subset \mathbb{T}^4$ e $x \in V$. Seja $\delta > 0$ de modo que $\mathcal{F}^{cs}_{\delta}(x,f) \subset U$. Temos que $\mathcal{F}^{cs}(x,f)$ é r-densa. Logo, existe $m \in \mathbb{N}$ tal que

$$f^{-m}(\mathcal{F}^{cs}_{\delta}) \cap D^{cu}_r \neq \varnothing \Rightarrow f^{-m}(V) \cap f^n(U) \neq \varnothing$$

Portanto,

$$f^{n+m}(U) \cap V \neq \emptyset$$

como queríamos. Como todas as estruturas são robustas, concluímos que f é robustamente transitiva.

Obrigada!