Coproduct and amalgamation of deductive systems by means of ordered algebras

Ciro Russo

Departamento de Matemática Instituto de Matemática e Estatística Universidade Federal da Bahia

VIII Encontro da Pós-Graduação em Matemática da UFBA November 22, 2023

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

< ロ > < 目 > < 目 > < 日 > < 日 > <

A brief overview

Starting point

• Propositional logic is the "deductive skeleton" of any logic.

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

くロ とく行 とく ひょく ロ とう

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

くロ とく行 とく ひょく ロ とう

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].

イロン 不可と イビン イロン

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...

イロン 不可と イビン イロン

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...
- Applications to logic need improvement.

くロ とく 行 とく きょうしょう

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...
- Applications to logic need improvement.

Targets

• (Concrete) language expansion.

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...
- Applications to logic need improvement.

Targets

- (Concrete) language expansion.
- Joining together (possibly totally different) deductive systems.

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...
- Applications to logic need improvement.

Targets

- (Concrete) language expansion.
- Joining together (possibly totally different) deductive systems.
- Joining together deductive systems with a common fragment.

2 Language expansions

3 Coproducts of deductive systems

4 Amalgamation of logics

イロト 不得 とくまとくまとう

Quantales and modules

Definition

A (unital) quantale $(Q, \bigvee, \cdot, 1)$ is a complete residuated lattice. Quantale homomorphisms preserve arbitrary joins and the monoid structure.

A (left) Q-module (M, \bigvee) is a sup-lattice with a scalar multiplication $\cdot : Q \times M \to M$ satisfying the usual module properties.

イロン 不可と イビン イロン

Quantales and modules

Definition

A (unital) quantale $(Q, \bigvee, \cdot, 1)$ is a complete residuated lattice. Quantale homomorphisms preserve arbitrary joins and the monoid structure.

A (left) Q-module (M, \bigvee) is a sup-lattice with a scalar multiplication $\cdot : Q \times M \to M$ satisfying the usual module properties.

Nuclei

A *Q*-module nucleus over *M* is a closure operator $\gamma : M \to M$ such that $a \cdot \gamma(x) \leq \gamma(a \cdot x)$ for all $a \in Q$ and $x \in M$. Nuclei are in bijective correspondence with congruences. The image M_{γ} of γ is a *Q*-module with $\gamma \bigvee X := \gamma(\stackrel{M}{\bigvee} X)$ and $a \cdot_{\gamma} x := \gamma(a \cdot x)$, for all $a \in Q$, $X \cup \{x\} \in M_{\gamma}$.

Propositional languages

Definition

A propositional language is a pair $\mathcal{L} = (L, \nu)$, where *L* is a set (of connectives) and $\nu : L \to \omega$ is the arity function. The set $Fm_{\mathcal{L}}$ of \mathcal{L} -formulas is defined in the usual manner from a denumerable set of variables $Var = \{x_n \mid n < \omega\}$; it is the term algebra over \mathcal{L} . We denote by $\Sigma_{\mathcal{L}}$ the monoid of substitutions of \mathcal{L} , i.e., of the endomorphisms of the \mathcal{L} -algebra $Fm_{\mathcal{L}}$.

Propositional languages

Definition

A propositional language is a pair $\mathcal{L} = (L, \nu)$, where *L* is a set (of connectives) and $\nu : L \to \omega$ is the arity function. The set $Fm_{\mathcal{L}}$ of \mathcal{L} -formulas is defined in the usual manner from a denumerable set of variables $Var = \{x_n \mid n < \omega\}$; it is the term algebra over \mathcal{L} . We denote by $\Sigma_{\mathcal{L}}$ the monoid of substitutions of \mathcal{L} , i.e., of the endomorphisms of the \mathcal{L} -algebra $Fm_{\mathcal{L}}$. The set of \mathcal{L} -equations is defined as $Eq_{\mathcal{L}} = \{\varphi \approx \psi \mid \varphi, \psi \in Fm_{\mathcal{L}}\}$ and shall be identified with $Fm_{\mathcal{L}}^2$. For any $T \subseteq \omega^2$, the set

$$Seq_{T} = \{\varphi_{1}, \dots, \varphi_{m} \Rightarrow \psi_{1}, \dots, \psi_{n} \mid \varphi_{i}, \psi_{j} \in Fm_{\mathcal{L}}, (m, n) \in T\}$$

of \mathcal{L} -sequents closed under the types of T will be identified with $\bigcup_{(m,n)\in T} Fm_{\mathcal{L}}^m \times Fm_{\mathcal{L}}^n$.

Propositional logics

Definition

By a propositional logic we mean a pair (D, \vdash) , where D – called the domain – is the set of formulas, the one of equations or a set of sequents closed under type over a propositional language $\mathcal{L} = (L, \nu)$, and \vdash is a binary relation on $\mathcal{P}D$ satisfying, for all $\Phi, \Psi, \Xi \in \mathcal{P}D$, the following conditions:

- if $\Psi \subseteq \Phi$, then $\Phi \vdash \Psi$;
- if $\Phi \vdash \Psi$ and $\Psi \vdash \Xi$, then $\Phi \vdash \Xi$;
- $\Phi \vdash \bigcup_{\Phi \vdash \Psi} \Psi;$
- $\Phi \vdash \Psi$ implies $\sigma[\Phi] \vdash \sigma[\Psi]$ for each substitution $\sigma \in \Sigma_{\mathcal{L}}$.

< 口 > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Not just) closure operators

The consequence operator

It is well-known that the mapping $\gamma_{\vdash} : \Phi \in \mathcal{P}D \mapsto \bigcup_{\Phi \vdash \Psi} \Psi \in \mathcal{P}D$ is a closure operator on $(\mathcal{P}D, \subseteq)$, but this representation of deductive systems is somewhat unsatisfactory. Not every closure operator is induced by a consequence relation.

< ロ > < 目 > < 目 > < 日 > < 日 > <

(Not just) closure operators

The consequence operator

It is well-known that the mapping $\gamma_{\vdash} : \Phi \in \mathcal{P}D \mapsto \bigcup_{\Phi \vdash \Psi} \Psi \in \mathcal{P}D$ is a closure operator on $(\mathcal{P}D, \subseteq)$, but this representation of deductive systems is somewhat unsatisfactory. Not every closure operator is induced by a consequence relation.

Refining the representation [Galatos and Tsinakis 2009]

 $(\mathcal{P}D, \bigcup)$ is a left module over the quantale $(\mathcal{P}\Sigma_{\mathcal{L}}, \bigcup, \cdot, \{id\})$ with the action $(\Sigma, \Phi) \mapsto \Sigma \cdot \Phi = \{\sigma(\varphi) \mid \sigma \in \Sigma, \varphi \in \Phi\}$ and γ_{\vdash} is a $\mathcal{P}\Sigma_{\mathcal{L}}$ -module nucleus on $\mathcal{P}D$, i.e. a closure operator such that $\Sigma \cdot \gamma_{\vdash}(\Phi) \subseteq \gamma_{\vdash}(\Sigma \cdot \Phi)$, whose image is the module of theories Th_{\vdash} of \vdash .

Moreover, the correspondence between nuclei and substitution invariant consequence relations on $\mathcal{P}D$ is bijective.

Interpretations and translations

Theorem [Galatos and Tsinakis 2009]

A propositional deductive system (D, \vdash) over \mathcal{L} is interpretable in (resp.: representable in, equivalent to) another \mathcal{L} -system (D', \vdash') if and only if there exists a $\mathfrak{P}\Sigma_{\mathcal{L}}$ -module homomorphism (resp.: embedding, isomorphism) from Th_{\vdash} to $Th_{\vdash'}$.

イロト 不得 トイラト イラト 二日

Interpretations and translations

Theorem [Galatos and Tsinakis 2009]

A propositional deductive system (D, \vdash) over \mathcal{L} is interpretable in (resp.: representable in, equivalent to) another \mathcal{L} -system (D', \vdash') if and only if there exists a $\mathfrak{P}\Sigma_{\mathcal{L}}$ -module homomorphism (resp.: embedding, isomorphism) from Th_{\vdash} to $Th_{\vdash'}$.

Translations

In order to extend the previous result to the case of systems over two different languages \mathcal{L} and \mathcal{L}' , it is necessary to introduce the concept of language translation. A translation $\tau : \mathcal{L} \to \mathcal{L}'$ turns out to induce a quantale morphism $t : \mathcal{P}\Sigma_{\mathcal{L}} \to \mathcal{P}\Sigma_{\mathcal{L}'}$ (and we also have a complete characterization of quantale morphisms induced by a translation). [R. 2013]

Restricting and extending the scalars

Restricting the scalars

A quantale morphism $h: Q \to R$ turns every *R*-module into a *Q*-module. In fact it defines a functor $()_h: R-\mathcal{M}od \to Q-\mathcal{M}od$ which has both a left and a right adjoint. An analogous procedure is known in the theory of ring modules as restricting the scalars along *h*.

くロンス用いるモンスモン

Restricting and extending the scalars

Restricting the scalars

A quantale morphism $h: Q \to R$ turns every *R*-module into a *Q*-module. In fact it defines a functor $()_h: R-\mathcal{M}od \to Q-\mathcal{M}od$ which has both a left and a right adjoint. An analogous procedure is known in the theory of ring modules as restricting the scalars along *h*.

The left adjoint

The left adjoint to the functor $()_h$ uses the tensor product:

 $()_h^l: M \in Q\text{-}\mathcal{M}od \mapsto R \otimes_Q M \in R\text{-}\mathcal{M}od.$

We shall call it the extension of scalars. Note: $x \in M \mapsto 1 \otimes x \in R \otimes_Q M$ is a *Q*-module morphism.

2 Language expansions

3 Coproducts of deductive systems

4 Amalgamation of logics

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

イロト イポト イヨト イヨト

Э

Tensor product and language expansion

Let $\mathcal{L}_1 \supseteq \mathcal{L}$ and $i : \mathfrak{P}\Sigma_{\mathcal{L}} \to \mathfrak{P}\Sigma_{\mathcal{L}_1}$ be the quantale embedding associated to the inclusion map. Let (D, \vdash) be a d.s. over \mathcal{L} , γ its associated nucleus, and *Th* its $\mathfrak{P}\Sigma_{\mathcal{L}}$ -module of theories.

メロト (日) (日) (日) (日)

Tensor product and language expansion

Let $\mathcal{L}_1 \supseteq \mathcal{L}$ and $i : \mathfrak{P}\Sigma_{\mathcal{L}} \to \mathfrak{P}\Sigma_{\mathcal{L}_1}$ be the quantale embedding associated to the inclusion map. Let (D, \vdash) be a d.s. over \mathcal{L} , γ its associated nucleus, and *Th* its $\mathfrak{P}\Sigma_{\mathcal{L}}$ -module of theories.

 $\mathfrak{P}\Sigma_{\mathcal{L}_1} \otimes_{\mathfrak{P}\Sigma_{\mathcal{L}}} \mathfrak{P}Fm_{\mathcal{L}} \cong \mathfrak{P}Fm_{\mathcal{L}_1}, \text{ hence } \mathfrak{P}\Sigma_{\mathcal{L}_1} \otimes_{\mathfrak{P}\Sigma_{\mathcal{L}}} \mathfrak{P}D \text{ is isomorphic to the domain } \mathfrak{P}D_1 \text{ in the language } \mathcal{L}_1 \text{ of the same type of } \mathfrak{P}D.$

Tensor product and language expansion

Let $\mathcal{L}_1 \supseteq \mathcal{L}$ and $i : \mathfrak{P}\Sigma_{\mathcal{L}} \to \mathfrak{P}\Sigma_{\mathcal{L}_1}$ be the quantale embedding associated to the inclusion map. Let (D, \vdash) be a d.s. over \mathcal{L} , γ its associated nucleus, and *Th* its $\mathfrak{P}\Sigma_{\mathcal{L}}$ -module of theories.

 $\begin{aligned} & \mathcal{P}\Sigma_{\mathcal{L}_1} \otimes_{\mathcal{P}\Sigma_{\mathcal{L}}} \mathcal{P}Fm_{\mathcal{L}} \cong \mathcal{P}Fm_{\mathcal{L}_1}, \text{ hence } \mathcal{P}\Sigma_{\mathcal{L}_1} \otimes_{\mathcal{P}\Sigma_{\mathcal{L}}} \mathcal{P}D \text{ is isomorphic} \\ & \text{to the domain } \mathcal{P}D_1 \text{ in the language } \mathcal{L}_1 \text{ of the same type of } \mathcal{P}D. \end{aligned}$

Theorem

 There exists a consequence relation ⊢₁ on PD₁ whose PΣ_{L1}-module of theories Th₁ is isomorphic to PΣ_{L1}⊗_{PΣ_L} Th.

Tensor product and language expansion

Let $\mathcal{L}_1 \supseteq \mathcal{L}$ and $i : \mathfrak{P}\Sigma_{\mathcal{L}} \to \mathfrak{P}\Sigma_{\mathcal{L}_1}$ be the quantale embedding associated to the inclusion map. Let (D, \vdash) be a d.s. over \mathcal{L} , γ its associated nucleus, and *Th* its $\mathfrak{P}\Sigma_{\mathcal{L}}$ -module of theories.

 $\begin{aligned} & \mathcal{P}\Sigma_{\mathcal{L}_1} \otimes_{\mathcal{P}\Sigma_{\mathcal{L}}} \mathcal{P}Fm_{\mathcal{L}} \cong \mathcal{P}Fm_{\mathcal{L}_1}, \text{ hence } \mathcal{P}\Sigma_{\mathcal{L}_1} \otimes_{\mathcal{P}\Sigma_{\mathcal{L}}} \mathcal{P}D \text{ is isomorphic} \\ & \text{to the domain } \mathcal{P}D_1 \text{ in the language } \mathcal{L}_1 \text{ of the same type of } \mathcal{P}D. \end{aligned}$

Theorem

- There exists a consequence relation \vdash_1 on $\mathcal{P}D_1$ whose $\mathcal{P}\Sigma_{\mathcal{L}_1}$ -module of theories Th_1 is isomorphic to $\mathcal{P}\Sigma_{\mathcal{L}_1} \otimes_{\mathcal{P}\Sigma_{\mathcal{L}}} Th$.
- The mapping $\Phi \in Th \mapsto \{id\} \otimes \Phi \in \mathfrak{P}\Sigma_{\mathcal{L}_1} \otimes_{\mathfrak{P}\Sigma_{\mathcal{L}}} Th$ is a $\mathfrak{P}\Sigma_{\mathcal{L}}$ -module embedding.

Preliminaries

2 Language expansions

4 Amalgamation of logics

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

イロト イポト イヨト イヨト

Э

Notations

For i = 1, 2, let \mathcal{L}_i be two languages, (D_i, \vdash_i) be \mathcal{L}_i -deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_1 and \mathcal{L}_2 . Then $\mathcal{P}\Sigma_{\mathcal{L}} \cong \mathcal{P}\Sigma_{\mathcal{L}_1} \amalg \mathcal{P}\Sigma_{\mathcal{L}_2}$. Let also E be the $\Sigma_{\mathcal{L}}$ -domain of the same type of the two given systems, and let us set the following:

- γ_i nuclei associated to \vdash_i ,
- $Th_i = (\mathcal{P}D_i)_{\gamma_i}$ the corresponding modules of theories,

くつう 不得す くうちょうちょう

Notations

For i = 1, 2, let \mathcal{L}_i be two languages, (D_i, \vdash_i) be \mathcal{L}_i -deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_1 and \mathcal{L}_2 . Then $\mathcal{P}\Sigma_{\mathcal{L}} \cong \mathcal{P}\Sigma_{\mathcal{L}_1} \amalg \mathcal{P}\Sigma_{\mathcal{L}_2}$. Let also E be the $\Sigma_{\mathcal{L}}$ -domain of the same type of the two given systems, and let us set the following:

- γ_i nuclei associated to \vdash_i ,
- $Th_i = (\mathcal{P}D_i)_{\gamma_i}$ the corresponding modules of theories,
- $d_i: \mathcal{P}D_i \to \mathcal{P}E$ the inclusion maps,

くつう 不得る くうちょうちょう

Notations

For i = 1, 2, let \mathcal{L}_i be two languages, (D_i, \vdash_i) be \mathcal{L}_i -deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_1 and \mathcal{L}_2 . Then $\mathcal{P}\Sigma_{\mathcal{L}} \cong \mathcal{P}\Sigma_{\mathcal{L}_1} \amalg \mathcal{P}\Sigma_{\mathcal{L}_2}$. Let also E be the $\Sigma_{\mathcal{L}}$ -domain of the same type of the two given systems, and let us set the following:

- γ_i nuclei associated to \vdash_i ,
- $Th_i = (\mathcal{P}D_i)_{\gamma_i}$ the corresponding modules of theories,
- $d_i: \mathcal{P}D_i \to \mathcal{P}E$ the inclusion maps,
- $\gamma'_i: \Phi \in \mathfrak{P}E \mapsto \gamma_i(\Phi \cap D_i) \cup (\Phi \setminus D_i) \in \mathfrak{P}E$, and

イロトイロトイラトイラト・ラ

Notations

For i = 1, 2, let \mathcal{L}_i be two languages, (D_i, \vdash_i) be \mathcal{L}_i -deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_1 and \mathcal{L}_2 . Then $\mathcal{P}\Sigma_{\mathcal{L}} \cong \mathcal{P}\Sigma_{\mathcal{L}_1} \amalg \mathcal{P}\Sigma_{\mathcal{L}_2}$. Let also E be the $\Sigma_{\mathcal{L}}$ -domain of the same type of the two given systems, and let us set the following:

- γ_i nuclei associated to \vdash_i ,
- $Th_i = (\mathcal{P}D_i)_{\gamma_i}$ the corresponding modules of theories,
- $d_i: \mathfrak{P}D_i \to \mathfrak{P}E$ the inclusion maps,
- γ'_i : $\Phi \in \mathfrak{P}E \mapsto \gamma_i(\Phi \cap D_i) \cup (\Phi \setminus D_i) \in \mathfrak{P}E$, and
- δ_i be the nuclei associated to the consequence relations \vdash_{δ_i} on *E* defined by means of the axioms and rules of \vdash_i .

< 口 > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notations

For i = 1, 2, let \mathcal{L}_i be two languages, (D_i, \vdash_i) be \mathcal{L}_i -deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_1 and \mathcal{L}_2 . Then $\mathcal{P}\Sigma_{\mathcal{L}} \cong \mathcal{P}\Sigma_{\mathcal{L}_1} \amalg \mathcal{P}\Sigma_{\mathcal{L}_2}$. Let also E be the $\Sigma_{\mathcal{L}}$ -domain of the same type of the two given systems, and let us set the following:

- γ_i nuclei associated to \vdash_i ,
- $Th_i = (\mathcal{P}D_i)_{\gamma_i}$ the corresponding modules of theories,
- $d_i: \mathcal{P}D_i \to \mathcal{P}E$ the inclusion maps,
- γ'_i : $\Phi \in \mathfrak{P}E \mapsto \gamma_i(\Phi \cap D_i) \cup (\Phi \setminus D_i) \in \mathfrak{P}E$, and
- δ_i be the nuclei associated to the consequence relations \vdash_{δ_i} on *E* defined by means of the axioms and rules of \vdash_i .

Last, let
$$\delta = \delta_1 \vee \delta_2$$
, and $Th = (\mathcal{P}E)_{\delta}$.

The embedding party

Lemma 1

Let $i \neq k \in \{1,2\}$. Then, for all $\Phi \cup \{\psi\} \in \mathcal{P}D_k$, $\psi \in \delta_i(\Phi)$ if and only if $\psi \in \Phi$.

The embedding party

Lemma 1

Let $i \neq k \in \{1,2\}$. Then, for all $\Phi \cup \{\psi\} \in \mathcal{P}D_k$, $\psi \in \delta_i(\Phi)$ if and only if $\psi \in \Phi$.

Proposition 2

There exist $\mathcal{P}\Sigma_{\mathcal{L}i}$ -module embeddings of Th_i and $\mathcal{P}\Sigma_{\mathcal{L}k}$ -module embeddings of $\mathcal{P}D_k$ into Th_{δ_i} , $i \neq k \in \{1, 2\}$:

 $f_i: \Phi \in Th_i \mapsto \delta_i(\Phi) \in Th_{\delta_i}, \text{ and } g_k: \Phi \in \mathcal{P}D_k \mapsto \delta_i(\Phi) \in Th_{\delta_i}.$

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

メロト 不得 トイラト イヨト 二日

The embedding party

Lemma 1

Let $i \neq k \in \{1,2\}$. Then, for all $\Phi \cup \{\psi\} \in \mathcal{P}D_k$, $\psi \in \delta_i(\Phi)$ if and only if $\psi \in \Phi$.

Proposition 2

There exist $\mathcal{P}\Sigma_{\mathcal{L}i}$ -module embeddings of Th_i and $\mathcal{P}\Sigma_{\mathcal{L}k}$ -module embeddings of $\mathcal{P}D_k$ into Th_{δ_i} , $i \neq k \in \{1, 2\}$:

$$f_i: \Phi \in Th_i \mapsto \delta_i(\Phi) \in Th_{\delta_i}, \text{ and } g_k: \Phi \in \mathcal{P}D_k \mapsto \delta_i(\Phi) \in Th_{\delta_i}.$$

Theorem 3

There exist $\mathfrak{P}\Sigma_{\mathcal{L}i}$ -module embeddings e_i : $Th_i \to Th$, i = 1, 2.

The embedding party

Theorem 4

For i = 1, 2, the $\mathcal{P}\Sigma_{\mathcal{L}}$ -modules $\mathcal{P}\Sigma_{\mathcal{L}} \otimes_{\mathcal{P}\Sigma_{\mathcal{L}}i} Th_i$ and Th_{δ_i} are isomorphic.

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

くロン (行) (日) (日) (日) 日

The embedding party

Theorem 4

For i = 1, 2, the $\mathcal{P}\Sigma_{\mathcal{L}}$ -modules $\mathcal{P}\Sigma_{\mathcal{L}} \otimes_{\mathcal{P}\Sigma_{\mathcal{L}}i} Th_i$ and Th_{δ_i} are isomorphic.

Theorem 5

The coproduct of Th_1 and Th_2 embeds as a sup-lattice in Th.

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

くロ とく行 とく ひょく ロ とう

The embedding party

Theorem 4

For i = 1, 2, the $\mathcal{P}\Sigma_{\mathcal{L}}$ -modules $\mathcal{P}\Sigma_{\mathcal{L}} \otimes_{\mathcal{P}\Sigma_{\mathcal{L}}i} Th_i$ and Th_{δ_i} are isomorphic.

Theorem 5

The coproduct of Th_1 and Th_2 embeds as a sup-lattice in Th.

- Each (D_i,⊢_i) is representable in (E,⊢_δ) (Theorem 3 and [R. 2013, Theorem 7.1]).
- *Th*_{δi} is precisely the result of a language expansion (via tensor product) on *Th_i* (Theorem 4).
- The sup-lattice of theories of δ contains an isomorphic copy of the coproduct of the *Th_i*'s (Theorem 5).

The embedding fireworks

4 Amalgamation of logics

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

イロト イポト イヨト イヨト

Э

The V-formations

With the same notations, let us add another language \mathcal{M} and a deductive system $(\mathcal{C}, \vdash_{\beta})$ on \mathcal{M} (again, of the same type of the D_i 's), with associated nucleus β and module of theories $Th' = (\mathcal{P}\mathcal{C})_{\beta}$. Let us also assume the existence of translations $\tau_i : \mathcal{M} \to \mathcal{L}_i$ and structural representations $r_i : Th' \to Th_i$ via τ_i .

The V-formations

With the same notations, let us add another language \mathcal{M} and a deductive system (C, \vdash_{β}) on \mathcal{M} (again, of the same type of the D_i 's), with associated nucleus β and module of theories $Th' = (\mathcal{P}C)_{\beta}$. Let us also assume the existence of translations $\tau_i : \mathcal{M} \to \mathcal{L}_i$ and structural representations $r_i : Th' \to Th_i$ via τ_i .

Translations and more nuclei

Thanks to the translation morphisms t_i and the inclusion ones of $\mathcal{P}\Sigma_{\mathcal{L}i}$ into $\mathcal{P}\Sigma_{\mathcal{L}}$, all of the modules and embeddings which appeared in the previous section, including e, are now in $\mathcal{P}\Sigma_{\mathcal{M}}$ - $\mathcal{M}od$.

Translations and more nuclei

Thanks to the translation morphisms t_i and the inclusion ones of $\mathcal{P}\Sigma_{\mathcal{L}i}$ into $\mathcal{P}\Sigma_{\mathcal{L}}$, all of the modules and embeddings which appeared in the previous section, including e, are now in $\mathcal{P}\Sigma_{\mathcal{M}}$ - $\mathcal{M}od$. By previous results from [R. 2013], we also have two $\mathcal{P}\Sigma_{\mathcal{M}}$ -module morphisms $s_i : \mathcal{P}C \to \mathcal{P}D_i$ such that $\gamma_i \circ s_i = r_i \circ \beta$.

(日本)(日本)(日本)(日本)(日本)

Translations and more nuclei

Thanks to the translation morphisms t_i and the inclusion ones of $\mathcal{P}\Sigma_{\mathcal{L}i}$ into $\mathcal{P}\Sigma_{\mathcal{L}}$, all of the modules and embeddings which appeared in the previous section, including e, are now in $\mathcal{P}\Sigma_{\mathcal{M}}$ - $\mathcal{M}od$. By previous results from [R. 2013], we also have two $\mathcal{P}\Sigma_{\mathcal{M}}$ -module morphisms $s_i : \mathcal{P}C \to \mathcal{P}D_i$ such that $\gamma_i \circ s_i = r_i \circ \beta$.

Let ε be the $\mathcal{P}\Sigma_{\mathcal{L}}$ -module nucleus on $\mathcal{P}E$ determined by the union of axioms and rules of \vdash_1 and \vdash_2 , and the set of rules

$$\Theta = \left\{ \frac{e_i r_i(\{\varphi\})}{e_k r_k(\{\varphi\})} \middle| \varphi \in C, i \neq k \in \{1, 2\} \right\}.$$

Translations and more nuclei

Thanks to the translation morphisms t_i and the inclusion ones of $\mathcal{P}\Sigma_{\mathcal{L}i}$ into $\mathcal{P}\Sigma_{\mathcal{L}}$, all of the modules and embeddings which appeared in the previous section, including e, are now in $\mathcal{P}\Sigma_{\mathcal{M}}$ - $\mathcal{M}od$. By previous results from [R. 2013], we also have two $\mathcal{P}\Sigma_{\mathcal{M}}$ -module morphisms $s_i : \mathcal{P}C \to \mathcal{P}D_i$ such that $\gamma_i \circ s_i = r_i \circ \beta$.

Let ε be the $\mathcal{P}\Sigma_{\mathcal{L}}$ -module nucleus on $\mathcal{P}E$ determined by the union of axioms and rules of \vdash_1 and \vdash_2 , and the set of rules

$$\Theta = \left\{ \frac{e_i r_i(\{\varphi\})}{e_k r_k(\{\varphi\})} \middle| \varphi \in C, i \neq k \in \{1, 2\} \right\}.$$

Let ζ be the nucleus determined by Θ , and $\varepsilon_i = \delta_i \lor \zeta$. We have:

$$\varepsilon = \delta \lor \zeta = \delta_1 \lor \delta_2 \lor \zeta = \varepsilon_1 \lor \varepsilon_2.$$

The amalgamation party

Lemma 6

There exist $\mathcal{P}\Sigma_{\mathcal{L}i}$ -module embeddings of Th_i into Th_{ε_i} .

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

イロト (行) (言) (言) (言) (言)

The amalgamation party

Lemma 6

There exist $\mathcal{P}\Sigma_{\mathcal{L}i}$ -module embeddings of Th_i into Th_{ε_i} .

Theorem 7

There exist $\mathfrak{P}\Sigma_{\mathcal{L}i}$ -module embeddings $m_i: Th_i \to Th_{\varepsilon}$.

イロト (行) (言) (言) (言) (言)

The amalgamation party

Lemma 6

There exist $\mathcal{P}\Sigma_{\mathcal{L}i}$ -module embeddings of Th_i into Th_{ε_i} .

Theorem 7

There exist $\mathfrak{P}\Sigma_{\mathcal{L}i}$ -module embeddings $m_i: Th_i \to Th_{\varepsilon}$.

Theorem 8

There exist $\mathfrak{P}\Sigma_{\mathcal{L}}$ -module nuclei ζ_i on $\mathfrak{P}\Sigma_{\mathcal{L}} \otimes_{\mathfrak{P}\Sigma_{\mathcal{L}}i} Th_i$ such that the $\mathfrak{P}\Sigma_{\mathcal{L}}$ -modules $(\mathfrak{P}\Sigma_{\mathcal{L}} \otimes_{\mathfrak{P}\Sigma_{\mathcal{L}}i} Th_i)_{\zeta_i}$ and Th_{ε_i} are isomorphic.

メロト (日) (日) (日) (日)

The amalgamation party

Lemma 6

There exist $\mathcal{P}\Sigma_{\mathcal{L}i}$ -module embeddings of Th_i into Th_{ε_i} .

Theorem 7

There exist $\mathfrak{P}\Sigma_{\mathcal{L}i}$ -module embeddings $m_i: Th_i \to Th_{\varepsilon}$.

Theorem 8

There exist $\mathfrak{P}\Sigma_{\mathcal{L}}$ -module nuclei ζ_i on $\mathfrak{P}\Sigma_{\mathcal{L}} \otimes_{\mathfrak{P}\Sigma_{\mathcal{L}}i} Th_i$ such that the $\mathfrak{P}\Sigma_{\mathcal{L}}$ -modules $(\mathfrak{P}\Sigma_{\mathcal{L}} \otimes_{\mathfrak{P}\Sigma_{\mathcal{L}}i} Th_i)_{\zeta_i}$ and Th_{ε_i} are isomorphic.

Theorem 9

The amalgamated coproduct of the $\mathcal{P}\Sigma_{\mathcal{M}}$ -modules Th_1 and Th_2 w.r.t. Th' embeds in Th_{ε} .

The amalgamation fireworks

References

- Galatos, N., and Tsinakis, C.; Equivalence of consequence relations: an order-theoretic and categorical perspective. *Journal of Symbolic Logic* **74**/3 (2009), 780–810.
- R., C.; An order-theoretic analysis of interpretations among propositional deductive systems. Annals of Pure and Applied Logic 164 (2) (2013), 112–130.
- R., C.; Coproduct and amalgamation of deductive systems by means of ordered algebras. *Logica Universalis* (2022), doi: 10.1007/s11787-022-00303-x.

< ロ > < 目 > < 目 > < 日 > < 日 > <

Thank you!

Ciro Russo VIII Encontro da Pós-Graduação em Matemática da UFBA

イロン 不得 とくまとくまとう