Coproduct and amalgamation of deductive systems by means of ordered algebras

Ciro Russo

Departamento de Matemática
Instituto de Matemática e Estatística
Universidade Federal da Bahia

VIII Encontro da Pós-Graduação em Matemática da UFBA November 22, 2023

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...
- Applications to logic need improvement.

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...
- Applications to logic need improvement.

Targets

- (Concrete) language expansion.

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...
- Applications to logic need improvement.

Targets

- (Concrete) language expansion.
- Joining together (possibly totally different) deductive systems.

A brief overview

Starting point

- Propositional logic is the "deductive skeleton" of any logic.
- It very often has an algebra-based semantics.
- Quantale modules are able to fully represent deductive systems [Galatos and Tsinakis, 2009].
- The algebraic and categorical theories of quantales and modules are quite well-developed. But...
- Applications to logic need improvement.

Targets

- (Concrete) language expansion.
- Joining together (possibly totally different) deductive systems.
- Joining together deductive systems with a common fragment.
(2) Language expansions
(3) Coproducts of deductive systems
(4) Amalgamation of logics

Quantales and modules

Definition

A (unital) quantale $(Q, \bigvee, \cdot, 1)$ is a complete residuated lattice. Quantale homomorphisms preserve arbitrary joins and the monoid structure.
A (left) Q-module (M, \bigvee) is a sup-lattice with a scalar multiplication $\cdot: Q \times M \rightarrow M$ satisfying the usual module properties.

Quantales and modules

Definition

A (unital) quantale $(Q, \bigvee, \cdot, 1)$ is a complete residuated lattice. Quantale homomorphisms preserve arbitrary joins and the monoid structure.
A (left) Q-module (M, \bigvee) is a sup-lattice with a scalar multiplication $\cdot: Q \times M \rightarrow M$ satisfying the usual module properties.

Nuclei

A Q-module nucleus over M is a closure operator $\gamma: M \rightarrow M$ such that $a \cdot \gamma(x) \leq \gamma(a \cdot x)$ for all $a \in Q$ and $x \in M$. Nuclei are in bijective correspondence with congruences.
The image M_{γ} of γ is a Q-module with ${ }^{\gamma} \bigvee X:=\gamma\left({ }^{M} \vee X\right)$ and $a \cdot{ }_{\gamma} x:=\gamma(a \cdot x)$, for all $a \in Q, X \cup\{x\} \in M_{\gamma}$.

Propositional languages

Definition

A propositional language is a pair $\mathcal{L}=(L, \nu)$, where L is a set (of connectives) and $\nu: L \rightarrow \omega$ is the arity function.
The set $F m_{\mathcal{L}}$ of \mathcal{L}-formulas is defined in the usual manner from a denumerable set of variables $\operatorname{Var}=\left\{x_{n} \mid n<\omega\right\}$; it is the term algebra over \mathcal{L}. We denote by $\Sigma_{\mathcal{L}}$ the monoid of substitutions of \mathcal{L}, i.e., of the endomorphisms of the \mathcal{L}-algebra $F m_{\mathcal{L}}$.

Propositional languages

Definition

A propositional language is a pair $\mathcal{L}=(L, \nu)$, where L is a set (of connectives) and $\nu: L \rightarrow \omega$ is the arity function.
The set $F m_{\mathcal{L}}$ of \mathcal{L}-formulas is defined in the usual manner from a denumerable set of variables $\operatorname{Var}=\left\{x_{n} \mid n<\omega\right\}$; it is the term algebra over \mathcal{L}. We denote by $\Sigma_{\mathcal{L}}$ the monoid of substitutions of \mathcal{L}, i.e., of the endomorphisms of the \mathcal{L}-algebra $F m_{\mathcal{L}}$. The set of \mathcal{L}-equations is defined as $E q_{\mathcal{L}}=\left\{\varphi \approx \psi \mid \varphi, \psi \in F m_{\mathcal{L}}\right\}$ and shall be identified with $F m_{\mathcal{L}}^{2}$. For any $T \subseteq \omega^{2}$, the set

$$
\operatorname{Seq}_{T}=\left\{\varphi_{1}, \ldots, \varphi_{m} \Rightarrow \psi_{1}, \ldots, \psi_{n} \mid \varphi_{i}, \psi_{j} \in F m_{\mathcal{L}},(m, n) \in T\right\}
$$

of \mathcal{L}-sequents closed under the types of T will be identified with $\bigcup_{(m, n) \in T} F m_{\mathcal{L}}^{m} \times F m_{\mathcal{L}}^{n}$.

Propositional logics

Definition

By a propositional logic we mean a pair (D, \vdash), where D - called the domain - is the set of formulas, the one of equations or a set of sequents closed under type over a propositional language $\mathcal{L}=(L, \nu)$, and \vdash is a binary relation on $\mathcal{P} D$ satisfying, for all $\Phi, \Psi, \equiv \in \mathcal{P} D$, the following conditions:

- if $\Psi \subseteq \Phi$, then $\Phi \vdash \Psi$;
- if $\Phi \vdash \Psi$ and $\Psi \vdash$ 三, then $\Phi \vdash$ 三;
- $\Phi \vdash \bigcup_{\phi \vdash \Psi} \Psi$;
- $\Phi \vdash \Psi$ implies $\sigma[\Phi] \vdash \sigma[\Psi]$ for each substitution $\sigma \in \Sigma_{\mathcal{L}}$.

(Not just) closure operators

The consequence operator

It is well-known that the mapping $\gamma \vdash: \Phi \in \mathcal{P} D \mapsto \bigcup_{\Phi \vdash \Psi} \Psi \in \mathcal{P} D$ is a closure operator on $(\mathcal{P} D, \subseteq)$, but this representation of deductive systems is somewhat unsatisfactory. Not every closure operator is induced by a consequence relation.

(Not just) closure operators

The consequence operator

It is well-known that the mapping $\gamma \vdash: \Phi \in \mathcal{P} D \mapsto \bigcup_{\Phi \vdash \Psi} \Psi \in \mathcal{P} D$ is a closure operator on $(\mathcal{P} D, \subseteq)$, but this representation of deductive systems is somewhat unsatisfactory. Not every closure operator is induced by a consequence relation.

Refining the representation [Galatos and Tsinakis 2009]
$(\mathcal{P} D, \bigcup)$ is a left module over the quantale $\left(\mathcal{P} \Sigma_{\mathcal{L}}, \bigcup, \cdot,\{i d\}\right)$ with the action $(\Sigma, \Phi) \mapsto \Sigma \cdot \Phi=\{\sigma(\varphi) \mid \sigma \in \Sigma, \varphi \in \Phi\}$ and $\gamma \vdash$ is a $\mathcal{P} \Sigma_{\mathcal{L}}$-module nucleus on $\mathcal{P} D$, i.e. a closure operator such that $\Sigma \cdot \gamma_{\vdash}(\Phi) \subseteq \gamma_{\vdash}(\Sigma \cdot \Phi)$, whose image is the module of theories $T h_{\vdash}$ of \vdash.
Moreover, the correspondence between nuclei and substitution invariant consequence relations on $\mathcal{P D}$ is bijective.

Interpretations and translations

Theorem [Galatos and Tsinakis 2009]

A propositional deductive system (D, \vdash) over \mathcal{L} is interpretable in (resp.: representable in, equivalent to) another \mathcal{L}-system $\left(D^{\prime}, \vdash^{\prime}\right)$ if and only if there exists a $\mathcal{P} \Sigma_{\mathcal{L}}$-module homomorphism (resp.: embedding, isomorphism) from $T h_{\vdash}$ to $T h_{\vdash}$.

Interpretations and translations

Theorem [Galatos and Tsinakis 2009]

A propositional deductive system (D, \vdash) over \mathcal{L} is interpretable in (resp.: representable in, equivalent to) another \mathcal{L}-system $\left(D^{\prime}, \vdash^{\prime}\right)$ if and only if there exists a $\mathcal{P} \Sigma_{\mathcal{L}}$-module homomorphism (resp.: embedding, isomorphism) from $T h_{\vdash}$ to $T h_{\vdash}$.

Translations

In order to extend the previous result to the case of systems over two different languages \mathcal{L} and \mathcal{L}^{\prime}, it is necessary to introduce the concept of language translation. A translation $\tau: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ turns out to induce a quantale morphism $t: \mathcal{P} \Sigma_{\mathcal{L}} \rightarrow \mathcal{P} \Sigma_{\mathcal{L}^{\prime}}$ (and we also have a complete characterization of quantale morphisms induced by a translation). [R. 2013]

Restricting and extending the scalars

Restricting the scalars

A quantale morphism $h: Q \rightarrow R$ turns every R-module into a Q-module. In fact it defines a functor ()$_{h}: R$-Mod $\rightarrow Q$-Mod which has both a left and a right adjoint. An analogous procedure is known in the theory of ring modules as restricting the scalars along h.

Restricting and extending the scalars

Restricting the scalars

A quantale morphism $h: Q \rightarrow R$ turns every R-module into a Q-module. In fact it defines a functor ()$_{h}: R$-Mod $\rightarrow Q$-Mod which has both a left and a right adjoint. An analogous procedure is known in the theory of ring modules as restricting the scalars along h.

The left adjoint

The left adjoint to the functor ()$_{h}$ uses the tensor product:

$$
()_{h}^{\prime}: M \in Q \text {-Mod } \mapsto R \otimes_{Q} M \in R \text {-Mod. }
$$

We shall call it the extension of scalars.
Note: $x \in M \mapsto 1 \otimes x \in R \otimes_{Q} M$ is a Q-module morphism.

(1) Preliminaries

(2) Language expansions
(3) Coproducts of deductive systems
(4) Amalgamation of logics

Tensor product and language expansion

Let $\mathcal{L}_{1} \supseteq \mathcal{L}$ and $i: \mathcal{P} \Sigma_{\mathcal{L}} \rightarrow \mathcal{P} \Sigma_{\mathcal{L}_{1}}$ be the quantale embedding associated to the inclusion map.
Let (D, \vdash) be a d.s. over \mathcal{L}, γ its associated nucleus, and $T h$ its $\mathcal{P} \Sigma_{\mathcal{L}}$-module of theories.

Tensor product and language expansion

Let $\mathcal{L}_{1} \supseteq \mathcal{L}$ and $i: \mathcal{P} \Sigma_{\mathcal{L}} \rightarrow \mathcal{P} \Sigma_{\mathcal{L}_{1}}$ be the quantale embedding associated to the inclusion map.
Let (D, \vdash) be a d.s. over \mathcal{L}, γ its associated nucleus, and $T h$ its $\mathcal{P} \Sigma_{\mathcal{L}}$-module of theories.
$\mathcal{P} \Sigma_{\mathcal{L}_{1}} \otimes \mathcal{P} \Sigma_{\mathcal{L}} \mathcal{P} F m_{\mathcal{L}} \cong \mathcal{P} F m_{\mathcal{L}_{1}}$, hence $\mathcal{P} \Sigma_{\mathcal{L}_{1}} \otimes_{\mathcal{P} \Sigma_{\mathcal{L}}} \mathcal{P} D$ is isomorphic to the domain $\mathcal{P} D_{1}$ in the language \mathcal{L}_{1} of the same type of $\mathcal{P} D$.

Tensor product and language expansion

Let $\mathcal{L}_{1} \supseteq \mathcal{L}$ and $i: \mathcal{P} \Sigma_{\mathcal{L}} \rightarrow \mathcal{P} \Sigma_{\mathcal{L}_{1}}$ be the quantale embedding associated to the inclusion map.
Let (D, \vdash) be a d.s. over \mathcal{L}, γ its associated nucleus, and $T h$ its $\mathcal{P} \Sigma_{\mathcal{L}}$-module of theories.
$\mathcal{P} \Sigma_{\mathcal{L}_{1}} \otimes \mathcal{P} \Sigma_{\mathcal{L}} \mathcal{P} F m_{\mathcal{L}} \cong \mathcal{P} F m_{\mathcal{L}_{1}}$, hence $\mathcal{P} \Sigma_{\mathcal{L}_{1}} \otimes_{\mathcal{P} \Sigma_{\mathcal{L}}} \mathcal{P} D$ is isomorphic to the domain $\mathcal{P} D_{1}$ in the language \mathcal{L}_{1} of the same type of $\mathcal{P} D$.

Theorem

(1) There exists a consequence relation \vdash_{1} on $\mathcal{P} D_{1}$ whose $\mathcal{P} \Sigma_{\mathcal{L}_{1}}$-module of theories $T h_{1}$ is isomorphic to $\mathcal{P} \Sigma_{\mathcal{L}_{1}} \otimes \mathcal{P}_{\mathcal{L}}$ $T h$.

Tensor product and language expansion

Let $\mathcal{L}_{1} \supseteq \mathcal{L}$ and $i: \mathcal{P} \Sigma_{\mathcal{L}} \rightarrow \mathcal{P} \Sigma_{\mathcal{L}_{1}}$ be the quantale embedding associated to the inclusion map.
Let (D, \vdash) be a d.s. over \mathcal{L}, γ its associated nucleus, and $T h$ its $\mathcal{P} \Sigma_{\mathcal{L}}$-module of theories.
$\mathcal{P} \Sigma_{\mathcal{L}_{1}} \otimes \mathcal{P} \Sigma_{\mathcal{L}} \mathcal{P} F m_{\mathcal{L}} \cong \mathcal{P} F m_{\mathcal{L}_{1}}$, hence $\mathcal{P} \Sigma_{\mathcal{L}_{1}} \otimes \mathcal{P} \Sigma_{\mathcal{L}} \mathcal{P} D$ is isomorphic to the domain $\mathcal{P} D_{1}$ in the language \mathcal{L}_{1} of the same type of $\mathcal{P} D$.

Theorem

(1) There exists a consequence relation \vdash_{1} on $\mathcal{P} D_{1}$ whose $\mathcal{P} \Sigma_{\mathcal{L}_{1}}$-module of theories $T h_{1}$ is isomorphic to $\mathcal{P} \Sigma_{\mathcal{L}_{1}} \otimes_{\mathcal{P} \Sigma_{\mathcal{L}}}$ Th.
(2) The mapping $\Phi \in T h \mapsto\{\mathrm{id}\} \otimes \Phi \in \mathcal{P} \Sigma_{\mathcal{L}_{1}} \otimes_{\mathcal{P} \Sigma_{\mathcal{L}}}$ Th is a $\mathcal{P} \Sigma_{\mathcal{L}}$-module embedding.

(1) Preliminaries

(2) Language expansions
(3) Coproducts of deductive systems
4. Amalgamation of logics

Notations

For $i=1,2$, let \mathcal{L}_{i} be two languages, $\left(D_{i}, \vdash_{i}\right)$ be \mathcal{L}_{i}-deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_{1} and \mathcal{L}_{2}. Then $\mathcal{P} \Sigma_{\mathcal{L}} \cong \mathcal{P} \Sigma_{\mathcal{L}_{1}} \amalg \mathcal{P} \Sigma_{\mathcal{L}_{2}}$. Let also E be the $\Sigma_{\mathcal{L}^{-}}$-domain of the same type of the two given systems, and let us set the following:

- γ_{i} nuclei associated to \vdash_{i},
- $T h_{i}=\left(\mathcal{P} D_{i}\right)_{\gamma_{i}}$ the corresponding modules of theories,

Notations

For $i=1,2$, let \mathcal{L}_{i} be two languages, $\left(D_{i}, \vdash_{i}\right)$ be \mathcal{L}_{i}-deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_{1} and \mathcal{L}_{2}. Then $\mathcal{P} \Sigma_{\mathcal{L}} \cong \mathcal{P} \Sigma_{\mathcal{L}_{1}} \amalg \mathcal{P} \Sigma_{\mathcal{L}_{2}}$. Let also E be the $\Sigma_{\mathcal{L}^{-}}$-domain of the same type of the two given systems, and let us set the following:

- γ_{i} nuclei associated to \vdash_{i},
- $T h_{i}=\left(\mathcal{P} D_{i}\right)_{\gamma_{i}}$ the corresponding modules of theories,
- $d_{i}: \mathcal{P} D_{i} \rightarrow \mathcal{P} E$ the inclusion maps,

Notations

For $i=1,2$, let \mathcal{L}_{i} be two languages, $\left(D_{i}, \vdash_{i}\right)$ be \mathcal{L}_{i}-deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_{1} and \mathcal{L}_{2}. Then $\mathcal{P} \Sigma_{\mathcal{L}} \cong \mathcal{P} \Sigma_{\mathcal{L}_{1}} \amalg \mathcal{P} \Sigma_{\mathcal{L}_{2}}$. Let also E be the $\Sigma_{\mathcal{L}^{-}}$-domain of the same type of the two given systems, and let us set the following:

- γ_{i} nuclei associated to \vdash_{i},
- $T h_{i}=\left(\mathcal{P} D_{i}\right)_{\gamma_{i}}$ the corresponding modules of theories,
- $d_{i}: \mathcal{P} D_{i} \rightarrow \mathcal{P} E$ the inclusion maps,
- $\gamma_{i}^{\prime}: \Phi \in \mathcal{P} E \mapsto \gamma_{i}\left(\Phi \cap D_{i}\right) \cup\left(\Phi \backslash D_{i}\right) \in \mathcal{P} E$, and

Notations

For $i=1,2$, let \mathcal{L}_{i} be two languages, $\left(D_{i}, \vdash_{i}\right)$ be \mathcal{L}_{i}-deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_{1} and \mathcal{L}_{2}. Then $\mathcal{P} \Sigma_{\mathcal{L}} \cong \mathcal{P} \Sigma_{\mathcal{L}_{1}} \amalg \mathcal{P} \Sigma_{\mathcal{L}_{2}}$. Let also E be the $\Sigma_{\mathcal{L}^{-}}$-domain of the same type of the two given systems, and let us set the following:

- γ_{i} nuclei associated to \vdash_{i},
- $T h_{i}=\left(\mathcal{P} D_{i}\right)_{\gamma_{i}}$ the corresponding modules of theories,
- $d_{i}: \mathcal{P} D_{i} \rightarrow \mathcal{P} E$ the inclusion maps,
- $\gamma_{i}^{\prime}: \Phi \in \mathcal{P} E \mapsto \gamma_{i}\left(\Phi \cap D_{i}\right) \cup\left(\Phi \backslash D_{i}\right) \in \mathcal{P} E$, and
- δ_{i} be the nuclei associated to the consequence relations $\vdash_{\delta_{i}}$ on E defined by means of the axioms and rules of \vdash_{i}.

Notations

For $i=1,2$, let \mathcal{L}_{i} be two languages, $\left(D_{i}, \vdash_{i}\right)$ be \mathcal{L}_{i}-deductive systems of the same type, and \mathcal{L} be the disjoint union of \mathcal{L}_{1} and \mathcal{L}_{2}. Then $\mathcal{P} \Sigma_{\mathcal{L}} \cong \mathcal{P} \Sigma_{\mathcal{L}_{1}} \amalg \mathcal{P} \Sigma_{\mathcal{L}_{2}}$. Let also E be the $\Sigma_{\mathcal{L}^{-}}$-domain of the same type of the two given systems, and let us set the following:

- γ_{i} nuclei associated to \vdash_{i},
- $T h_{i}=\left(\mathcal{P} D_{i}\right)_{\gamma_{i}}$ the corresponding modules of theories,
- $d_{i}: \mathcal{P} D_{i} \rightarrow \mathcal{P} E$ the inclusion maps,
- $\gamma_{i}^{\prime}: \Phi \in \mathcal{P} E \mapsto \gamma_{i}\left(\Phi \cap D_{i}\right) \cup\left(\Phi \backslash D_{i}\right) \in \mathcal{P} E$, and
- δ_{i} be the nuclei associated to the consequence relations $\vdash_{\delta_{i}}$ on E defined by means of the axioms and rules of \vdash_{i}.

Last, let $\delta=\delta_{1} \vee \delta_{2}$, and $T h=(\mathcal{P} E)_{\delta}$.

The embedding party

Lemma 1
 Let $i \neq k \in\{1,2\}$. Then, for all $\Phi \cup\{\psi\} \in \mathcal{P} D_{k}, \psi \in \delta_{i}(\Phi)$ if and only if $\psi \in \Phi$.

The embedding party

Lemma 1

Let $i \neq k \in\{1,2\}$. Then, for all $\Phi \cup\{\psi\} \in \mathcal{P} D_{k}, \psi \in \delta_{i}(\Phi)$ if and only if $\psi \in \Phi$.

Proposition 2

There exist $\mathcal{P} \Sigma_{\mathcal{L}_{i} \text {-module embeddings of } T h_{i} \text { and } \mathcal{P} \Sigma_{\mathcal{L}_{k}} \text {-module }}$ embeddings of $\mathcal{P} D_{k}$ into $T h_{\delta_{i}}, i \neq k \in\{1,2\}$:

$$
\begin{aligned}
& f_{i}: \Phi \in T h_{i} \mapsto \delta_{i}(\Phi) \in T h_{\delta_{i}}, \quad \text { and } \\
& g_{k}: \Phi \in \mathcal{P} D_{k} \mapsto \delta_{i}(\Phi) \in T h_{\delta_{i}} .
\end{aligned}
$$

The embedding party

Lemma 1

Let $i \neq k \in\{1,2\}$. Then, for all $\Phi \cup\{\psi\} \in \mathcal{P} D_{k}, \psi \in \delta_{i}(\Phi)$ if and only if $\psi \in \Phi$.

Proposition 2

There exist $\mathcal{P} \Sigma_{\mathcal{L}_{i}-\text { module embeddings of } T h_{i}}$ and $\mathcal{P} \Sigma_{\mathcal{L}_{k}-\text { module }}$ embeddings of $\mathcal{P} D_{k}$ into $T_{\delta_{i}}, i \neq k \in\{1,2\}$:

$$
\begin{aligned}
& f_{i}: \Phi \in T h_{i} \mapsto \delta_{i}(\Phi) \in T h_{\delta_{i}}, \quad \text { and } \\
& g_{k}: \Phi \in \mathcal{P} D_{k} \mapsto \delta_{i}(\Phi) \in T h_{\delta_{i}} .
\end{aligned}
$$

Theorem 3

There exist $\mathcal{P} \Sigma_{\mathcal{L}_{i}}$-module embeddings $e_{i}: T h_{i} \rightarrow T h, i=1,2$.

The embedding party

Theorem 4
 For $i=1,2$, the $\mathcal{P} \Sigma_{\mathcal{L}}$-modules $\mathcal{P} \Sigma_{\mathcal{L}} \otimes_{\mathcal{P} \Sigma_{\mathcal{L}_{i}}} T h_{i}$ and $T h_{\delta_{i}}$ are isomorphic.

The embedding party

Theorem 4

For $i=1,2$, the $\mathcal{P} \Sigma_{\mathcal{L}}$-modules $\mathcal{P} \Sigma_{\mathcal{L}} \otimes_{\mathcal{P} \Sigma_{\mathcal{L}_{i}}} T h_{i}$ and $T h_{\delta_{i}}$ are isomorphic.

Theorem 5

The coproduct of $T h_{1}$ and $T h_{2}$ embeds as a sup-lattice in Th.

The embedding party

Theorem 4

For $i=1,2$, the $\mathcal{P} \Sigma_{\mathcal{L}}$-modules $\mathcal{P} \Sigma_{\mathcal{L}} \otimes \mathcal{P}_{\Sigma_{\mathcal{L} i}} T h_{i}$ and $T h_{\delta_{i}}$ are isomorphic.

Theorem 5

The coproduct of $T h_{1}$ and $T h_{2}$ embeds as a sup-lattice in $T h$.

- Each $\left(D_{i}, \vdash_{i}\right)$ is representable in $\left(E, \vdash_{\delta}\right)$ (Theorem 3 and $[R$. 2013, Theorem 7.1]).
- $T h_{\delta_{i}}$ is precisely the result of a language expansion (via tensor product) on $T h_{i}$ (Theorem 4).
- The sup-lattice of theories of δ contains an isomorphic copy of the coproduct of the $T h_{i}$'s (Theorem 5).

The embedding fireworks

(1) Preliminaries

(2) Language expansions

3 Coproducts of deductive systems
4. Amalgamation of logics

The V-formations

With the same notations, let us add another language \mathcal{M} and a deductive system $\left(C, \vdash_{\beta}\right)$ on \mathcal{M} (again, of the same type of the D_{i} 's), with associated nucleus β and module of theories $T h^{\prime}=(\mathcal{P} C)_{\beta}$. Let us also assume the existence of translations $\tau_{i}: \mathcal{M} \rightarrow \mathcal{L}_{i}$ and structural representations $r_{i}: T h^{\prime} \rightarrow T h_{i}$ via τ_{i}.

The V-formations

With the same notations, let us add another language \mathcal{M} and a deductive system $\left(C, \vdash_{\beta}\right)$ on \mathcal{M} (again, of the same type of the D_{i} 's), with associated nucleus β and module of theories $T h^{\prime}=(\mathcal{P} C)_{\beta}$. Let us also assume the existence of translations $\tau_{i}: \mathcal{M} \rightarrow \mathcal{L}_{i}$ and structural representations $r_{i}: T h^{\prime} \rightarrow T h_{i}$ via τ_{i}.

Translations and more nuclei

Thanks to the translation morphisms t_{i} and the inclusion ones of $\mathcal{P} \Sigma_{\mathcal{L} i}$ into $\mathcal{P} \Sigma_{\mathcal{L}}$, all of the modules and embeddings which appeared in the previous section, including e, are now in $\mathcal{P} \Sigma_{\mathcal{M}}-\mathcal{M o d}$.

Translations and more nuclei

Thanks to the translation morphisms t_{i} and the inclusion ones of $\mathcal{P} \Sigma_{\mathcal{L}_{i}}$ into $\mathcal{P} \Sigma_{\mathcal{L}}$, all of the modules and embeddings which appeared in the previous section, including e, are now in $\mathcal{P} \Sigma_{\mathcal{M}^{-}}$Mod. By previous results from [R. 2013], we also have two $\mathcal{P} \Sigma_{\mathcal{M}}$-module morphisms $s_{i}: \mathcal{P} C \rightarrow \mathcal{P} D_{i}$ such that $\gamma_{i} \circ s_{i}=r_{i} \circ \beta$.

Translations and more nuclei

Thanks to the translation morphisms t_{i} and the inclusion ones of $\mathcal{P} \Sigma_{\mathcal{L}_{i}}$ into $\mathcal{P} \Sigma_{\mathcal{L}}$, all of the modules and embeddings which appeared in the previous section, including e, are now in $\mathcal{P} \Sigma_{\mathcal{M}}-\mathcal{M o d}$. By previous results from [R. 2013], we also have two $\mathcal{P} \Sigma_{\mathcal{M}}$-module morphisms $s_{i}: \mathcal{P C} \rightarrow \mathcal{P} D_{i}$ such that $\gamma_{i} \circ s_{i}=r_{i} \circ \beta$.

Let ε be the $\mathcal{P} \Sigma_{\mathcal{L}}$-module nucleus on $\mathcal{P} E$ determined by the union of axioms and rules of \vdash_{1} and \vdash_{2}, and the set of rules

$$
\Theta=\left\{\left.\frac{e_{i} r_{i}(\{\varphi\})}{e_{k} r_{k}(\langle\varphi\})} \right\rvert\, \varphi \in C, i \neq k \in\{1,2\}\right\} .
$$

Translations and more nuclei

Thanks to the translation morphisms t_{i} and the inclusion ones of $\mathcal{P} \Sigma_{\mathcal{L}_{i}}$ into $\mathcal{P} \Sigma_{\mathcal{L}}$, all of the modules and embeddings which appeared in the previous section, including e, are now in $\mathcal{P} \Sigma_{\mathcal{M}^{-}}$Mod. By previous results from [R. 2013], we also have two $\mathcal{P} \Sigma_{\mathcal{M}}$-module morphisms $s_{i}: \mathcal{P} C \rightarrow \mathcal{P} D_{i}$ such that $\gamma_{i} \circ s_{i}=r_{i} \circ \beta$.

Let ε be the $\mathcal{P} \Sigma_{\mathcal{L}^{-}}$-module nucleus on $\mathcal{P} E$ determined by the union of axioms and rules of \vdash_{1} and \vdash_{2}, and the set of rules

$$
\Theta=\left\{\left.\frac{e_{i} r_{i}(\{\varphi\})}{e_{k} r_{k}(\{\varphi\})} \right\rvert\, \varphi \in C, i \neq k \in\{1,2\}\right\} .
$$

Let ζ be the nucleus determined by Θ, and $\varepsilon_{i}=\delta_{i} \vee \zeta$. We have:

$$
\varepsilon=\delta \vee \zeta=\delta_{1} \vee \delta_{2} \vee \zeta=\varepsilon_{1} \vee \varepsilon_{2}
$$

The amalgamation party

Lemma 6

There exist $\mathcal{P} \Sigma_{\mathcal{L} i}$-module embeddings of $T h_{i}$ into $T h_{\varepsilon_{i}}$.

The amalgamation party

Lemma 6

There exist $\mathcal{P} \Sigma_{\mathcal{L}_{i}-\text { module embeddings of } T h_{i}}$ into $T h_{\varepsilon_{i}}$.

Theorem 7

The amalgamation party

Lemma 6

There exist $\mathcal{P} \Sigma_{\mathcal{L}_{i}-\text { module embeddings of } T h_{i}}$ into $T h_{\varepsilon_{i}}$.

Theorem 7

Theorem 8

There exist $\mathcal{P} \Sigma_{\mathcal{L}}$-module nuclei ζ_{i} on $\mathcal{P} \Sigma_{\mathcal{L}} \otimes_{\mathcal{P} \Sigma_{\mathcal{L}_{i}}} T h_{i}$ such that the $\mathcal{P} \Sigma_{\mathcal{L}}$-modules $\left(\mathcal{P} \Sigma_{\mathcal{L}} \otimes \mathcal{P}_{\Sigma_{\mathcal{L}_{i}}} T h_{i}\right)_{\zeta_{i}}$ and $T h_{\varepsilon_{i}}$ are isomorphic.

The amalgamation party

Lemma 6

There exist $\mathcal{P} \Sigma_{\mathcal{L}_{i}-\text { module embeddings of } T h_{i}}$ into $T h_{\varepsilon_{i}}$.

```
Theorem 7
```


Theorem 8

There exist $\mathcal{P} \Sigma_{\mathcal{L}}$-module nuclei ζ_{i} on $\mathcal{P} \Sigma_{\mathcal{L}} \otimes_{\mathcal{P} \Sigma_{\mathcal{L}_{i}}} T h_{i}$ such that the $\mathcal{P} \Sigma_{\mathcal{L}}$-modules $\left(\mathcal{P} \Sigma_{\mathcal{L}} \otimes{\mathcal{P} \Sigma_{\mathcal{L}_{i}}} T h_{i}\right)_{\zeta_{i}}$ and $T h_{\varepsilon_{i}}$ are isomorphic.

Theorem 9

The amalgamated coproduct of the $\mathcal{P} \Sigma_{\mathcal{M}}$-modules $T h_{1}$ and $T h_{2}$ w.r.t. $T h^{\prime}$ embeds in $T h_{\varepsilon}$.

The amalgamation fireworks

References

- Galatos, N., and Tsinakis, C.; Equivalence of consequence relations: an order-theoretic and categorical perspective. Journal of Symbolic Logic 74/3 (2009), 780-810.
R., C.; An order-theoretic analysis of interpretations among propositional deductive systems. Annals of Pure and Applied Logic 164 (2) (2013), 112-130.
R R., C.; Coproduct and amalgamation of deductive systems by means of ordered algebras. Logica Universalis (2022), doi: 10.1007 /s11787-022-00303-x.

Thank you!

