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Setting

C1-partially hyperbolic diffeomorphisms on compact
boundaryless manifolds
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Goal

To study the topological entropy inside the class
of partially hyperbolic diffeomorphisms isotopics to
Anosov and the existence (and uniqueness) of mea-
sure of maximal entropy.
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Preliminaries

Definition (Dominated Splitting)

For an f -invariant set Λ a Df -invariant splitting of the
tangent bundle

TΛM = E1 ⊕ · · · ⊕ Ek

is dominated if each bundle has constant dimen-
sion (at least two of them non-zero) and there ex-
ists an integer ℓ ≥ 1 such that for every x ∈ Λ, all
i = 1, . . . , k − 1, and every pair of unitary vectors
u ∈ E1(x)⊕· · ·⊕Ei(x) and v ∈ Ei+1(x)⊕· · ·⊕Ek(x),

Df ℓx (u)
Df ℓx (v)

≤ 1
2
.
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Definition (Partially Hyperbolic)

f ∈ Diff (M) is partially hyperbolic if there exists a
dominated splitting

TM = Es ⊕ Ec ⊕ Eu,

where Es is uniformly contracting, Eu is uniformly ex-
panding, and at least one of Es and Eu is nontrivial.

Definition (Hyperbolic)

A partially hyperbolic diffeomorphism is hyperbolic
(or Anosov) if

TM = Es ⊕ Eu.
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(X , dist ) metric space and f : X → X uniformly
continuous, x ∈ X , n ∈ N, ϵ > 0

B(x ,n, ϵ) := {y ∈ X : max
0≤i≤n−1

dist(f ix , f iy) < ϵ}.

For K ⊆ X , F ⊆ X (n, ϵ)-spans K if K ⊆
⋃

x∈F B(x ,n, ε).
If K is compact, N(n, ϵ,K ) is the smallest cardinality of
any (n, ϵ)-spans sets for K .

Definition (Topological entropy)

htop(f ;K ) := lim
ϵ→0

lim sup
n→∞

1
n
logN(n, ϵ,K ) ≥ 0

The topological entropy of f is

htop(f ) := sup
K⊂X compact

{htop(f ;K )}.
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f : X → X continuous map on compact metric space X .
M1(f ) - set of f -invariant probability measures.

Variational Principle

htop(f ) = sup{hµ(f ) : µ ∈ M1(f )}.

Definition (Measure of maximal entropy)

µ∈M1(f ) is a measure of maximal entropy (mme) if

hµ(f ) = htop(f ).

If there exists a unique mme, then f is intrinsically ergodic.
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Motivation

For compact surfaces, Nielsen-Thurston classification:

Given an (orientation preserving) diffeomorphism f there
exists g homotopic to it satisfying one of the following

gp is the identity for some p ∈ N, or

g is pseudo-Anosov, or

g leaves invariant some finite set of closed simple
curves.
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Periodic maps have zero entropy.

(Fathi-Shub, 2012) f : S → S diffeomorphism in the
isotopy class of a pseudo-Anosov A : S → S, then
htop(f ) ≥ htop(A).

The third case is reducible to the other cases.
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Questions

Can we characterize the minimizers in [f ]?

Can we give sufficient conditions for a map g ∈ [f ] to
be a minimizer of the topological entropy?

C. Lizana PH vs. DA



Derived from Anosov (DA)

Definition (DA)

f : M → M C1-diffeo is called Derived from Anosov if
it is isotopic to an Anosov diffeomorphism.

If M = Td , then f is isotopic to its action in the homology
A : H1(Td) → H1(Td). We call A the linear part of f .
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1D - Central bundle

o op q

Isotopy
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Hertz-Hertz-Tahzibi-Ures, 2011.

Buzzi-Fisher-Sambarino-Vásquez, 2012.

Ures, 2012.

f : Td → Td DA with 1D center bundle, then

htop(f ) = htop(A).

Moreover, f is intrinsically ergodic.
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dim(Ec) ≥ 2

What happens for higher center bundle dimension ?
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Newhouse-Young, 1983.

Dı́az-Fisher-Pacı́fico-Vieitez, 2012.

Carrasco-Lizana-Pujals-Vásquez, 2021.

Álvarez-Sánchez-Varão, 2021.
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DA with dim(Ec) ≥ 2

Thm. A (Carrasco-L.-Pujals-Vásquez’21)

f : Td → Td a DA partially hyperbolic diffeomor-
phism. Assume further that

1 the lifts of Fcs,Fu to Rd have GPS, and
likewise for Fs,Fcu;

2 Ec is strongly simple.
Then htop(f ) = htop(A).

If furthermore Ec is dominated, then the same is true
for C1 small perturbations g of f , provided that g has
simple center bundle.
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Global Product Structure

We assume that the pairs of foliations F̃s, F̃cu and F̃u, F̃cs

have GPS: for x , y ∈ Rd we denote

⟨x , y⟩csu = W̃ cs(x) ∩ W̃ u(y)

⟨x , y⟩cus = W̃ cu(x) ∩ W̃ s(y).
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Ec is strongly simple

Ec is simple if
a) Ec = E1 ⊕ · · · ⊕ E ℓ with dimE i = 1, ∀ i = 1, . . . , ℓ.

b) ∀S ⊂ {1, · · · , ℓ}, ES := ⊕i∈SE i integrates to an
f -invariant foliation FS .
Furthermore, there is compatibility in the sense:
S ⊂ S′ ⇒ FS sub-foliates FS′.

Ec is strongly simple if it is simple and furthermore

c) For every i , the lifts of F i := F{i},F{1,··· ,̂i,··· ,ℓ} to the
universal covering of M have GPS inside each leaf of
the lift of Fc.
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Thm. B (Carrasco-L.-Pujals-Vásquez’21)

There exist g : T4 → T4 PH-DA with linear part A,
U C1-neighborhood of g and c > 0 such that ∀g′ ∈ U
it holds

1 the lifts of Fcs
g′ ,Fu

g′ to Rd have GPS, and
likewise for Fs

g′ ,Fcu
g′ ;

2 htop(g′) ≥ htop(A) + c;

3 g′ is transitive.
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Special class of DA [Carvalho’93]

A ∈ SL(3,Z) with eigenvalues λu
A ∈ R, and λs

A, λ
s
A ∈ C, s.t.

0 < |λs
A| = |λs

A| < 1 < |λu
A|.

fA :T3→T3 transitive linear Anosov diff. induced by A with

TT3 = Es ⊕ Eu,

dim(Es) = 2, dim(Eu) = 1.
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Let p a fixed point of fA and fix r0 > 0 and δ > 0 sufficiently
small such that r0 > 4δ.
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fA is deformed through an isotopy {ft}t∈[−1,1] supported in
B(p, 3r0

4 ) and satisfying:

▷ ft is C1-close to fA, ∀t < 0.

▷ Fs
A is ft -invariant and ft(p) = p for t ∈ [−1,1].

▷ The isotopy changes the stability index of p through a
Hopf bifurcation in Fs

A(p) at t = 0, turning p a source
for t > 0.
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▷ There are 0 < |λs
A| ≤ λt < 1 < σt < βt ≤ |λu| s.t for

every unit vectors v cs ∈ Ccs
t (x) and vuu ∈ Cuu

t (x)

||Dx ft(v cs)|| ≤ σt , x ∈ B(p, r0
2 ),

||Dx ft(v cs)|| ≤ λt , x ∈ T3 \ B(p, r0
2 ),

βt ≤ ||Dx ft(vuu)|| ≤ |λu|, x ∈ T3.

▷ There exist 0 < κt < 1 and a neighbourhood Vt(p)
contained in B(p, r0

2 ) ∩ W u
t (p) s.t

Jc = |det(Dx ft |TxFc(x))| ≤ κt , ∀x ∈ T3 \ Vt(p).
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Proposition (Properties of the DA)

For each t ∈ (0,1] and g := ft : T3 → T3 as above
holds:

1 ∃hg semi-conjugation between g and fA such
that dC0(hg, Id) < δ.

2 g is partially hyperbolic, dynamical coherence
with indecomposable 2-dimensional central
subbundle and minimal central foliation.

3 g has global product structure(GPS).

4 All equivalence classes h−1
g (hg(x)) are

contained in a single center leaf.
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Main result

Main Theorem (L.-Parra-Vásquez’23)

g : T3 → T3 (defined as above) has a unique mea-
sure of maximal entropy. This measure is ergodic
and hyperbolic. Moreover, g preserve the topologi-
cal entropy of fA.
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Strategy for existence of mme

If g, f : X → X are continuous and h a semi-conjugation
between g and f . Assuming

∃µ ∈ M1(f ) a mme for f , and

∃ν ∈ M1(g) such that h∗ν = µ.

follows that

1 htop(g,h−1(x)) = 0, ∀x ∈ X ⇒ ν is a mme for g.

2 µ({h(y) : h−1(h(y)) = {y}}) = 1 ⇒ ν is the unique

mme for g so that h∗(ν) = µ.
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Sketch of the proof of MT

h−1
g (hg(z))={y∈T3 : d(gn(y);gn(z)) ≤ δ, ∀n ∈ Z} = Dz ,

∀ z ∈ Fu
g (p).
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W u
g (p) is an open dense set. Moreover,

T3 \ (W u
g (p) ∪

⋃
q∈Sp

Fu
g (q)) ̸= ∅.

For every x0 ∈ T3 \ (W u
g (p) ∪

⋃
q∈Sp

Fu
g (q)) given by

Bonatti-Viana has trivial equivalence class.
Moreover, if z ∈ Fu

g (x0), then h−1
g (hg(z)) is also trivial.

C. Lizana PH vs. DA



htop(g,h−1
g (hg(z))) = 0, ∀z ∈ W u

g (p) ∪
⋃

q∈Sp
Fu

g (q).

There exists B ⊂ T3 with total m-Lebesgue measure
such that every x ∈ B has trivial equivalence class,
that is,

m({x ∈ T3 : #h−1
g (x) = 1}) = 1.
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Let f : M → M PH diff. Suppose that there exist an
open U ⊂ M and 0 < λs ≤ λ < 1 < β ≤ λu s.t.

max
x∈U

{||Dx f |Ec
x
||} ≤ β, max

x∈M\U
{||Dx f |Ec

x
||} ≤ λ.

Every f -invariant ergodic measure µ such that
µ(U) ≪ 1 is hyperbolic.

Moreover, λc(x) < 0 almost every point x ∈ M.
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Obrigada
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