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The problem

Let Ω be a bounded domain in RN with N ⩾ 3, which boun-
dary ∂Ω is sufficiently regular. We consider the following initial-
boundary value problem{

utt −∆u+ u+ η(−∆)
1
2ut + aϵ(t)(−∆)

1
2 vt = f(u),

vtt −∆v + η(−∆)
1
2 vt − aϵ(t)(−∆)

1
2ut = 0,

(1)

(x, t) ∈ Ω × (τ,∞), where η is a positive constant, subject to
boundary conditions

u = v = 0, (x, t) ∈ ∂Ω× (τ,∞), (2)

and initial conditions

u(τ, x) = u0(x), ut(τ, x) = u1(x),

v(τ, x) = v0(x), vt(τ, x) = v1(x), x ∈ Ω, τ ∈ R.
(3)
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Assume that the function aϵ : R→ (0,∞) is continuously differentiable
in R and satisfies the following condition:

0 < a0 ≤ aϵ(t) ≤ a1, (4)

for all ϵ ∈ [0, 1] and t ∈ R, with positive constants a0 and a1, and we
also assume that the first derivative of aϵ is uniformly bounded in t and
ϵ, that is, there exists a constant b0 > 0 such that

|a′ϵ(t)| ≤ b0 for all t ∈ R, ϵ ∈ [0, 1]. (5)

Furthermore, we assume that aϵ is (β,C)-Hölder continuous, for each
ϵ ∈ [0, 1]; that is,

|aϵ(t)− aϵ(s)| ≤ C|t− s|β (6)

for all t, s ∈ R and ϵ ∈ [0, 1].

Concerning the nonlinearity f , we assume
that f ∈ C1(R) and it satisfies the dissipativeness condition

lim sup
|s|→∞

f(s)

s
≤ 0, (7)

and also satisfies the subcritical growth condition given by

|f ′(s)| ≤ c(1 + |s|ρ−1), (8)

for all s ∈ R, where 1 < ρ < n
n−2 , with n ≥ 3, and c > 0 is a constant.
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In the case that aϵ(t) ≡ a, the system (1) represents the autono-
mous version of the Klein-Gordon-Zakharov system. Within the
autonomous case, if n = 3 then the Klein-Gordon-Zakharov sys-
tem arises to describe the interaction of a Langmuir wave (Plasma
oscillations, are rapid oscillations of the electron density in con-
ducting media such as plasmas or metals in the ultraviolet region)
and acoustic wave in a plasma.

These types of systems have been considered by many researchers
in recent years.
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Objectives

The goal of this talk is:

1 existence of local and global solutions in some appropriate
space.

2 existence of pullback attractors for (1)-(3).

For more details see [Bonotto, Nascimento and Santiago, Long-time

behaviour for a non-autonomous Klein-Gordon-Zakharov system, Journal of

Mathematical Analysis and Applications, 506 (2022), 125670.
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Basic Concepts

Suppose that we have a non-autonomous differential equations
in a Banach space X

du

dt
= f(t, u), u(s) = u0,

with a unique solution u(t, s, u0). Note that the initial time has
a very important role because we have an explicit dependence on
time of f . This time dependence may appear in external force, in
the operator, in both at the same time or even on the boundary
conditions.

In general, a non-autonomous system shows two different impor-
tant dynamics without relation between them:

1 forward dynamic: the behavior when final time goes to infinity:

lim
t→∞

u(t, s, u0).

2 pullback dynamics: the behavior when the initial time goes to minus
infinity:

lim
s→−∞

u(t, s, u0).
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AUTONOMOUS ←→ NONAUTONOMOUS

Semigroup
T (t)

Process
U(t, s)

exponential decay
∥T (t)∥ ⩽ e−βt

exponential stability

∥U(t, s)∥ ⩽ e−β(t−s)

Invariance
T (t)A = A

Invariance
U(t, s)A(s) = A(t)

attraction
t→∞

pullback attraction
s→ −∞

For more details see [Carvalho, Langa and Robinson, Attractors for

infinite-dimensional non-autonomous semantical systems, Springer, 2012.]
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Pullback attraction

time

B(t)

X X X X X X

ts1 s0s2· · ·s(C, t)

C ∋ x0

U(t, s0)x0

U(t, s1)x0

U(t, s2)x0
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Singularly non-autonomous abstract problem

Here, L(Z) will denote the space of linear and bounded operators
defined in a Banach space Z. Let A(t), t ∈ R, be a family
of unbounded closed linear operators defined on a fixed dense
subspace D of Z.
Consider the singularly non-autonomous parabolic problem

du

dt
+A(t)u = 0, t > τ,

u(τ) = I.
(9)

We assume

(a) The operator A(t) : D ⊂ Z → Z is a closed densely defined
operator (the domain D is fixed) and there is a constant
C > 0 (independent of t ∈ R) such that

∥(λI +A(t))−1∥L(Z) ⩽
C

|λ|+ 1
; for all λ ∈ C with Reλ ⩾ 0.

To express this fact we will say that the family A(t) is uni-
formly sectorial.
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(b) There are constants C > 0 and ϵ0 > 0 such that, for any
t, τ, s ∈ R,

∥[A(t)−A(τ)]A−1(s)∥L(Z) ⩽ C(t− τ)ϵ0 , ϵ0 ∈ (0, 1].

To express this fact we will say that the map R ∋ t 7→ A(t)
is uniformly Hölder continuous.

Denote by A0 the operator A(t0) for some t0 ∈ R fixed. If Zα

denotes the domain of Aα
0 , α > 0, with the graph norm and Z0 :=

Z, denote by {Zα;α ⩾ 0} the fractional power scale associated
with A0 (see Henry [Springer, 1981] and Amann [Birkhäuser
Verlag, Basel, 1995].
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From (a), −A(t) is the infinitesimal generator of an analytic se-
migroup {e−τA(t) ∈ L(Z) : τ ⩾ 0}. Using this and the fact that
0 ∈ ρ(A(t)), it follows that

∥e−τA(t)∥L(Z) ⩽ Ce−δτ , δ > 0, τ ⩾ 0, t ∈ R,

and

∥A(t)e−τA(t)∥L(Z) ⩽ Cτ−1e−δτ , δ > 0, τ > 0, t ∈ R.

It follows from (b) that ∥A(t)A−1(τ)∥L(Z) ⩽ C, ∀ t, τ ∈ I, for all
I ⊂ R bounded. Also, the semigroup e−τA(t) generated by −A(t)
satisfies the following estimate

∥e−τA(t)∥L(Zβ ,Zα) ⩽Mτβ−α,

where 0 ⩽ β ⩽ α < 1 + ϵ0.
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Next we recall the definition of a linear evolution process associ-
ated with a family of operators {A(t) : t ∈ R}.

Definition 1

A family {L(t, τ) : t ⩾ τ ∈ R} ⊂ L(Z) satisfying

1) L(τ, τ) = I,

2) L(t, σ)L(σ, τ) = L(t, τ), for any t ⩾ σ ⩾ τ,

3) P × Z ∋ ((t, τ), u0) 7→ L(t, τ)v0 ∈ Z is continuous,

where P = {(t, τ) ∈ R2 : t ⩾ τ}, is called a linear evolution
process (process for short) or family of evolution operators.
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If the operator A(t) is uniformly sectorial and uniformly Hölder
continuous, then there exists a linear evolution process {L(t, τ) :
t ⩾ τ ∈ R} associated with A(t), which is given by

L(t, τ) = e−(t−τ)A(τ) +

∫ t

τ
L(t, s)[A(τ)−A(s)]e−(s−τ)A(τ)ds,

that is solution of (9).

For more details see Carvalho and Nascimento [DCDS, 2009].
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We consider the singularly non-autonomous abstract parabolic
problem 

du

dt
+A(t)u = g(t, u), t > τ,

u(τ) = u0 ∈ D,
(10)

where the operator A(t) is uniformly sectorial and uniformly
Hölder continuous and the nonlinearity g satisfies conditions which
will be specified later.
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Definition 2

Let g : R ×Xα → Xβ, α ∈ [β, β + 1) be a continuous function.
We say that a function u is a (local) solution of (10) starting in
u0 ∈ Xα, if u ∈ C([τ, τ+ t0], Xα)∩C1((τ, τ+ t0], X

α), u(τ) = u0,
u(t) ∈ D(A(t)) for all t ∈ (τ, τ + t0] and (10) is satisfied for all
t ∈ (τ, τ + t0).

Now we state the following abstract local well-posedness result.

Theorem 3 (Caraballo et al. Nonlinear Analysis (2010))

Suppose that the family of operators A(t) is uniformly sectorial
and uniformly Hölder continuous in Xβ. If g : R × Xα → Xβ,
α ∈ [β, β + 1), is a Lipschitz continuous map in bounded subsets
of Xα, then, given r > 0, there is a time t0 > 0 such that for
all u0 ∈ BXα(0; r) there exists a unique solution u(·, τ, u0) ∈
C([τ, τ+t0], X

α)∩C1((τ, τ+t0], X
α) of the problem (10) starting

in u0 ∈ Xα. Moreover, such solutions are continuous with respect
the initial data in BXα(0; r).
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Basic definitions and existence results

We start remembering the definition of Hausdorff semi-distance
between two subsets A and B of a metric space (X, d):

distH(A,B) = sup
a∈A

inf
b∈B

d(a, b).

Next we present several definitions about theory of pullback at-
tractors.

Definition 4

Let {S(t, τ) : t ⩾ τ ∈ R} be an evolution process in a metric
space X. A set B(t) ⊂ X pullback attracts a set C at time t
under {S(t, τ) : t ⩾ τ ∈ R} if

lim
τ→−∞

distX(S(t, τ)C,B(t)) = 0,

where S(t, τ)C := {S(t, τ)x ∈ X : x ∈ C}.
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Definition 5

We say that an evolution process {S(t, τ) : t ⩾ τ ∈ R} in X is
pullback strongly bounded if, for each t ∈ R and each bounded
subset B of X, ⋃

τ⩽t

⋃
s⩽τ

S(τ, s)B

is bounded.

Definition 6

An evolution process {S(t, τ) : t ⩾ τ ∈ R} in X is pullback
asymptotically compact if, for each t ∈ R, each sequence {τn} in
(−∞, t] with τn → −∞ as n → ∞ and each bounded sequence
{xn} in X such that {S(t, τn)xn} ⊂ X is bounded, the sequence
{S(t, τn)xn} is relatively compact in X.
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Definition 7

A family {A(t) : t ∈ R} of compact subsets of X is a pullback
attractor for an evolution process {S(t, τ) : t ≥ τ ∈ R} if the
following conditions hold:

(i) {A(t) : t ∈ R} is invariant, that is, S(t, τ)A(τ) = A(t) for all
t ≥ τ ,

(ii) {A(t) : t ∈ R} pullback attracts bounded subsets of X, that
is,

lim
τ→−∞

dX(S(t, τ)B,A(t)) = 0

for every t ∈ R and every bounded subset B of X, where
S(t, τ)B = {S(t, τ)x : x ∈ B} is the image of B under
{S(t, τ) : t ≥ τ ∈ R}, and

(iii) {A(t) : t ∈ R} is the minimal family of closed sets satisfying
property (ii).
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In applications, to prove that a process has a pullback attractor we use the

Theorem below, proved in Caraballo et al., [Nonlinear Anal. (2010)]

which gives a sufficient condition for existence of a pullback attractor.

Definition 8

An evolution process {S(t, τ) : t ⩾ τ ∈ R} in X is pullback
strongly bounded dissipative if, for each t ∈ R, there is a bounded
subset B(t) of X which pullback absorbs bounded subsets of X
at time s for each s ⩽ t; that is, given a bounded subset B of X
and s ⩽ t, there exists τ0(s,B) such that S(s, τ)B ⊂ B(t), for all
τ ⩽ τ0(s,B).

Theorem 9 (CCLR, 2010)

If an evolution process {S(t, τ) : t ⩾ τ ∈ R} in the metric space
X is pullback strongly bounded dissipative and pullback
asymptotically compact, then {S(t, τ) : t ⩾ τ ∈ R} has a
pullback attractor {A(t) : t ∈ R} with the property that ∪

τ⩽t
A(τ)

is bounded for each t ∈ R.
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strongly bounded dissipative if, for each t ∈ R, there is a bounded
subset B(t) of X which pullback absorbs bounded subsets of X
at time s for each s ⩽ t; that is, given a bounded subset B of X
and s ⩽ t, there exists τ0(s,B) such that S(s, τ)B ⊂ B(t), for all
τ ⩽ τ0(s,B).

Theorem 9 (CCLR, 2010)

If an evolution process {S(t, τ) : t ⩾ τ ∈ R} in the metric space
X is pullback strongly bounded dissipative and pullback
asymptotically compact, then {S(t, τ) : t ⩾ τ ∈ R} has a
pullback attractor {A(t) : t ∈ R} with the property that ∪

τ⩽t
A(τ)

is bounded for each t ∈ R.
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The next result gives sufficient conditions for pullback asymptotic compactness.

Theorem 10 (CCLR, 2010)

Let {S(t, s) : t ⩾ s ∈ R} be a pullback strongly bounded evolution
process such that S(t, s) = L(t, s) + U(t, s), where there exist a
non-increasing function k : R+×R+ → R, with k(σ, r)→ 0 when
σ →∞, and for all s ⩽ t and x ∈ X with ∥x∥ ⩽ r, ∥L(t, s)x∥ ⩽
k(t− s, r), and U(t, s) is compact. Then, the family of evolution
process {S(t, s) : t ⩾ s ∈ R} is pullback asymptotically compact.

For more details see [Carvalho, Langa and Robinson, Attractors for

infinite-dimensional non-autonomous semantical systems, Springer, 2012.]
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Abstract setting

Consider the following initial-boundary value problem{
utt −∆u+ u+ η(−∆)

1
2ut + aϵ(t)(−∆)

1
2 vt = f(u),

vtt −∆v + η(−∆)
1
2 vt − aϵ(t)(−∆)

1
2ut = 0,

(11)

(x, t) ∈ Ω × (τ,∞), where η is a positive constant, subject to
boundary conditions

u = v = 0, (x, t) ∈ ∂Ω× (τ,∞), (12)

and initial conditions

u(τ, x) = u0(x), ut(τ, x) = u1(x),

v(τ, x) = v0(x), vt(τ, x) = v1(x), x ∈ Ω, τ ∈ R.
(13)
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In order to formulate the non-autonomous problem (1)− (3) in a
nonlinear evolution process setting, we introduce some notations.
Let X = L2(Ω) and denote by A : D(A) ⊂ X → X the negative
Laplacian operator, that is, Au = (−∆)u for all u ∈ D(A), where
D(A) = H2(Ω) ∩ H1

0 (Ω). Thus A is a positive self-adjoint ope-
rator in X with compact resolvent and, therefore, −A generates
a compact analytic semigroup on X. Following Henry [Sprin-
ger, 1981]), A is a sectorial operator in X. Now, denote by Xα,
α > 0, the fractional power spaces associated with the operator
A; that is, Xα = D(Aα) endowed with the graph norm. With
this notation, we have X−α = (Xα)′ for all α > 0, see Amann
(Birkhäuser Verlag, 1995).
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In this framework, the non-autonomous problem (1) − (3) can
be rewritten as an ordinary differential equation in the following
abstract form {

Wt +A(t)W = F (W ), t > τ,

W (τ) =W0, τ ∈ R,
(14)

where W =W (t), for all t ∈ R, and W0 =W (τ) are respectively
given by

W =


u
ut
v
vt

 and W0 =


u0
u1
v0
v1

 ,
and, for each t ∈ R, the unbounded linear operatorA(t) : D(A(t)) ⊂
Y → Y is defined by
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A(t)


u
v
w
z

=


−v
(A+ I)u+ ηA

1
2 v + aϵ(t)A

1
2 z

−z
−aϵ(t)A

1
2 v +Aw + ηA

1
2 z

 (15)

for each
[
u v w z

]T
in the domain D(A(t)) defined by the space

D(A(t)) = Y 1 = X1 ×X 1
2 ×X1 ×X 1

2 , (16)

where
Y = Y0 = X

1
2 ×X ×X 1

2 ×X
is the phase space of the problem (1)− (3).

The nonlinearity F is given
by

F (W ) =


0

fe(u)
0
0

 , (17)

where fe(u) is the Nemitskĭi operator associated with f(u); that is,

fe(u)(x) = f(u(x)), for all x ∈ Ω.
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Now, we observe that the norms

∥(x, y, z, w)∥1 = ∥x∥
X

1
2
+ ∥y∥X + ∥z∥

X
1
2
+ ∥w∥X

and

∥(x, y, z, w)∥2 = (∥x∥2
X

1
2
+ ∥y∥2X + ∥z∥2

X
1
2
+ ∥w∥2X)

1
2

are equivalent in Y0. In this way, we shall use the same notation
∥(x, y, z, w)∥Y0 for both norms and the choice will be as conveni-
ent.
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In the abstract form our problem was written as

Wt +A(t)W = F (W ),

where
A(t) : Y 1 → Y.

However, the natural energy of the problem is given by

E(t) = 1

2
∥u(t)∥2

X
1
2
+

1

2
∥u(t)∥2X +

1

2
∥ut(t)∥2X +

1

2
∥v(t)∥2

X
1
2

+
1

2
∥vt(t)∥2X −

∫
Ω

∫ u

0
f(s)dsdx

that is naturally defined in Y and we will show that E(t) decays
along the solutions, and then we would like to write our problem
in the form

A(t) : Y → Y−1

for some appropriate space Y−1 such that Y ⊂ Y−1 and

F (·) : Y → Yα−1 ↪→ Y−1, (0 < α < 1).
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Y 1 Y 0

A(a)(t)

Y 1 Y 0 Y−1Yα−1

A(a)(t)

Fsubcritical case

Y 1 Y 0 Y−1

A(a)(t)

Fcritical case
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Main results

Theorem 11 (Well-Posedness)

Let f ∈ C1(R) be a function satisfying (7)-(8), assume conditions
(4)-(6) hold and let F : Y0 → Yα−1 ⊂ Y−1 be defined in (17). Then
for any initial data W0 ∈ Y0 the problem (14) has a unique global
solution W (t) such that

W (t) ∈ C([τ,∞), Y0).

Moreover, such solutions are continuous with respect to the initial
data on Y0. Here, Y−1 = X ×X− 1

2 ×X ×X− 1
2 .
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Theorem 12 (Pullback Attractors)

Under the conditions of Theorem 11, the problem (1)− (3) has a
pullback attractor {A(t) : t ∈ R} in Y0 and⋃

t∈R
A(t) ⊂ Y0

is bounded.
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Linear Analysis

Consider the linear problem associated with (1)-(3), in this case
we consider the singularly non-autonomous linear parabolic pro-
blem {

wt +A(t)w = 0, t > τ,

w(τ) = I,
. (18)

It is not difficult to see that det(A(t)) = A(A + I), and therefore that 0 ∈
ρ(A(t)), for all t ∈ R.

Moreover, for each t ∈ R, the operator A−1(t) : Y0 →
Y0 is defined by

A−1(t)


u
v
w
z

 =


ηA

1
2 (A+ I)−1 (A+ I)−1 aϵ(t)A

1
2 (A+ I)−1 0

−I 0 0 0

−aϵ(t)A
− 1

2 0 ηA− 1
2 A−1

0 0 −I 0



u
v
w
z

 .

(19)
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Proposition 13

If Y−1 denotes the extrapolation space of Y0 = X
1
2 ×X×X

1
2 ×X

generated by the operator A−1(t), then

Y−1 = X ×X− 1
2 ×X ×X− 1

2 .

Recall that the extrapolation space Y−1 is the completion of the
normed space (Y, ∥A−1(t) · ∥Y ).

Proposition 14

The family of operators {A(t) : t ∈ R}, defined in (15)− (16), is
uniformly Hölder continuous in Y−1.

Proof: Using (6), this result follows immediately from (15) and
(16).
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The next step is to show the analyticity of the semigroup {e−τA(t) :
τ ≥ 0}.

Theorem 15

The semigroup {e−τA(t) : τ ≥ 0}, generated by −A(t), is analytic
for each t ∈ R.

For the proof see [Bonotto, Nascimento and Santiago, JMAA
(2022)].
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Theorem 16

The operators A(t) are uniformly sectorial and the map R ∋ t 7→
A(t) ∈ L(Y−1) is uniformly Hölder continuous. Then, for each
functional parameter a, there exist a process

{L(t, τ) : t ⩾ τ ∈ R}

(or simply L(t, τ)) associated with the operator A(t), that is so-
lution of the linear problem associated with (1)-(3).
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Remark 17

We have the following description of the fractional power scale
for the operator A(t), given as follows

Y0 ↪→ Yα−1 ↪→ Y−1, for all 0 < α < 1,

where

Yα−1 = [Y−1, Y0]α = [X ×X− 1
2 ×X ×X− 1

2 , X
1
2 ×X ×X 1

2 ×X]α

= [X,X
1
2 ]α × [X− 1

2 , X]α × [X,X
1
2 ]α × [X− 1

2 , X]α

= X
α
2 ×X

α−1
2 ×X α

2 ×X
α−1
2 ,

where [·, ·]α denotes the complex interpolation functor (see Trie-
bel (1978)). The first equality follows from Proposition ?? (since
0 ∈ ρ(A(a)(t))) see Amann (Example 4.7.3 (b)]) and the second
equality follows from Proposition 2 in Carvalho and Cholewa
(Bull. Austral. Math. Soc., (2002).
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Existence of local solutions

Proposition 18 gives us sufficient conditions for F : Y0 → Yα−1 to
be Lipschitz continuous in bounded subsets of Y0.

Proposition 18

Assume that 1 < ρ < n+2(1−α)
n−2 , with α ∈ (0, 1). Then the map

F : Y0 → Yα−1, defined in (17), is Lipschitz continuous in boun-
ded subsets of Y0.

Corollary 19

Let 1 < ρ < n+2(1−α)
n−2 , with α ∈ (0, 1), f ∈ C1(R) be a func-

tion satisfying (7)-(8), assume conditions (4)-(6) hold and let
F : Y0 → Yα−1 be defined in (17). Then given r > 0, there exists
a time t0 = t0(r) > 0 such that for all W0 ∈ BY0(0, r), there
exists a unique solution W : [τ, τ + t0] → Y0 of the problem (14)
starting in W0. Moreover, such solutions are continuous with
respect to the initial data in BY0(0, r).
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Global Existence

Proof of Theorem 11: By Corollary 19, the problem (1)-(3)
has a local solution (u(t), ut(t), v(t), vt(t)) in Y0 defined on some
interval [τ, τ + t0].
We can show that

d

dt
E(t) = −η∥(−∆)

1
4ut∥2X − η∥(−∆)

1
4 vt∥2X (20)

for all τ < t ≤ τ + t0, where

E(t) = 1

2
∥u(t)∥2

X
1
2
+

1

2
∥u(t)∥2X +

1

2
∥ut(t)∥2X

+
1

2
∥v(t)∥2

X
1
2
+

1

2
∥vt(t)∥2X −

∫
Ω

∫ u

0
f(s)dsdx

(21)

is the total energy associated with the solution (u(t), ut(t), v(t), vt(t))
of the problem (1)-(3) in Y0.

marcelojdn@ufscar.br VIII EPGMAT - UFBA



Global Existence

Proof of Theorem 11: By Corollary 19, the problem (1)-(3)
has a local solution (u(t), ut(t), v(t), vt(t)) in Y0 defined on some
interval [τ, τ + t0].
We can show that

d

dt
E(t) = −η∥(−∆)

1
4ut∥2X − η∥(−∆)

1
4 vt∥2X (20)

for all τ < t ≤ τ + t0, where

E(t) = 1

2
∥u(t)∥2

X
1
2
+

1

2
∥u(t)∥2X +

1

2
∥ut(t)∥2X

+
1

2
∥v(t)∥2

X
1
2
+

1

2
∥vt(t)∥2X −

∫
Ω

∫ u

0
f(s)dsdx

(21)

is the total energy associated with the solution (u(t), ut(t), v(t), vt(t))
of the problem (1)-(3) in Y0.

marcelojdn@ufscar.br VIII EPGMAT - UFBA



The identity (20) means that the map t 7→ E(t) is monotone
decreasing along solutions. Moreover, using the property E(t) ≤
E(τ) for all τ ≤ t ≤ τ + t0, we can obtain a priori estimate of the
solution (u(t), ut(t), v(t), vt(t)) in Y0. In fact, we obtain

∥u∥2
X

1
2
+ ∥ut∥2X + ∥v∥2

X
1
2
+ ∥vt∥2X ≤ 4

(
E(τ) + Cλ1

4

)
,

that is,

∥(u(t), ut(t), v(t), vt(t))∥2Y0
≤ 4

(
E(τ) + Cλ1

4

)
.

This ensures that the problem (1)−(3) has a global solutionW (t)
in Y0, which proves the result.
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Since the problem (1)− (3) has a global solution W (t) in Y0, we
can define an evolution process {S(t, τ) : t ≥ τ ∈ R} in Y0 by

S(t, τ)W0 =W (t), t ≥ τ ∈ R. (22)

According to Carvalho and Nascimento (DCDS-S 2009)

S(t, τ)W0 = L(t, τ)W0 + U(t, τ)W0, t ≥ τ ∈ R, (23)

where {L(t, τ) : t ≥ τ ∈ R} is the linear evolution process in Y0
associated with the homogeneous problem{

Wt +A(t)W = 0, t > τ,

W (τ) =W0, τ ∈ R,
(24)

and

U(t, τ)W0 =

∫ t

τ
L(t, s)F (S(s, τ)W0)ds. (25)
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where {L(t, τ) : t ≥ τ ∈ R} is the linear evolution process in Y0
associated with the homogeneous problem{

Wt +A(t)W = 0, t > τ,

W (τ) =W0, τ ∈ R,
(24)

and

U(t, τ)W0 =

∫ t

τ
L(t, s)F (S(s, τ)W0)ds. (25)
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Dissipativeness of the thermoelastic equation

In this section, we prove the existence of the pullback attractor of
the problem (1)-(3). To this end, we need to make a modification
on the energy functional. More precisely, for γ1, γ2 ∈ R+, let us
define Lγ1,γ2 : Y0 → R by the map

Lγ1,γ2(ϕ, φ, ψ,Φ) =
1

2
∥ϕ∥2

X
1
2
+

1

2
∥ϕ∥2X +

1

2
∥φ∥2X +

1

2
∥ψ∥2

X
1
2

+
1

2
∥Φ∥2X + γ1⟨ϕ, φ⟩X + γ2⟨ψ,Φ⟩X

−
∫
Ω

∫ ϕ

0
f(s)dsdx.

(26)
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Theorem 20

There exists R > 0 such that for any bounded subset B ⊂ Y0 one
can find t0(B) > 0 satisfying

∥(u, ut, v, vt)∥2Y0
≤ R for all t ≥ τ + t0(B).

In particular, the evolution process {S(t, τ) : t ≥ τ ∈ R} defined
in (22) is pullback strongly bounded dissipative.

Next, we prove that the solutions of problem (14) are uniformly exponentially

dominated when the initial data are in bounded subsets of Y0.

Theorem 21

Let B ⊂ Y0 be a bounded set. If W : [τ,∞) → Y0 is the global
solution of (14) starting at W0 ∈ B, then there are positive cons-
tants σ = σ(B), K1 = K1(B) and K2 = K2(B) such that

∥W (t)∥2Y0
≤ K1e

−σ(t−τ) +K2, t ≥ τ.
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Theorem 22

Let B ⊂ Y0 be a bounded set and denote by L : [τ,∞) → Y0 the
solution of the homogeneous problem (24) starting in W0 ∈ B.
Then there exist positive constants K = K(B) and ζ such that

∥L(t)∥2Y0
≤ Ke−ζ(t−τ), t ≥ τ.

Proposition 23

For each t > τ ∈ R, the evolution process S(t, τ) : Y0 → Y0 given
in (22) is a compact map.
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Proof of Theorem 12: Theorem 20 assures that the evolution
process S(t, τ) : Y0 → Y0 given by (22) is pullback strongly boun-
ded dissipative. Additionally, it follows by Proposition 23 that
S(t, τ) : Y0 → Y0 is compact, and, consequently, it is pullback
asymptotically compact. Now the result is a simple consequence
of Theorem 9.
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Obrigado.
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