MATHFLIX

1ª Temporada - Jogadora 1
 2ª Temporada - Jogadora 2
 3ª Temporada - Combate

Anéis Limpos e r-Limpos

Prof^a Dr^a Jacqueline Costa Cintra - UEFS

VIII Encontro de Pós-Graduação em Matemática da UFBA - EPGMAT

20 de novembro de 2023

1 1ª Temporada - Jogadora 1

2 2ª Temporada - Jogadora 2

3 3ª Temporada - Combate

Considerando A um anel, temos alguns elementos do mesmo que possuem um destaque na teoria.

Considerando A um anel, temos alguns elementos do mesmo que possuem um destaque na teoria.

Definição

Um elemento $e \in A$ *é* dito idempotente se $e^2 = e$.

Notação: Id(A) é o conjunto de todos os elementos idempotentes do anel A.

Considerando A um anel, temos alguns elementos do mesmo que possuem um destaque na teoria.

Definição

Um elemento $e \in A$ *é dito idempotente se* $e^2 = e$.

Notação: Id(A) é o conjunto de todos os elementos idempotentes do anel A.

Observação

Os idempotentes 0 e 1 são os denominados idempotentes triviais.

Definição

Um elemento $u \in A$ é dito unidade se $u \neq 0$ e $\exists x \in A$ tal que $u \cdot x = x \cdot u = 1_A$.

Notação: $\mathcal{U}(A)$ é o conjunto de todas as unidades do anel A.

Índice

- 1 1ª Temporada Jogadora 1
- 2 2ª Temporada Jogadora 2
- 3 3ª Temporada Combate

Limpeza de Anéis

Limpeza de Anéis

Não, eita...não é isso!

Elementos Limpos

Definição

Seja A um anel, um elemento $x \in A$ é dito limpo se o mesmo pode ser escrito como a soma de um idempotente e uma unidade de A, ou seja,

$$x = u + e$$
, $com u \in \mathcal{U}(A)$; $e \in Id(A)$.

Exemplo

Exemplo

Note que 2 é limpo em \mathbb{Z} , já que:

$$2=1+1$$
, com $1\in \mathcal{U}(\mathbb{Z})$ e $1\in Id(\mathbb{Z})$.

Elementos Limpos

Proposição

Considerando A um anel qualquer, temos que:

- Unidades são elementos limpos;
- Idempotentes são elementos limpos.

Elementos Limpos

Proposição

Considerando A um anel qualquer, temos que:

- Unidades são elementos limpos;
- Idempotentes são elementos limpos.

Ideia da Prova

De fato,

$$u = u + 0$$

$$e = (2e - 1) + (1 - e),$$

em que $u \in \mathcal{U}(A)$ e $e \in Id(A)$.

Anéis Limpos

Definição (Anel Limpo)

Um anel A qualquer é dito limpo se todos os seus elementos são limpos, ou seja,

$$\forall x \in A, \ x = u + e, \quad com \ u \in \mathcal{U}(A); \ e \in Id(A).$$

Exemplos

Exemplo

Note que todos os corpos são limpos, já que o elemento neutro da soma é idempotente e os demais elementos do anel são unidades, portanto todos os elementos são limpos.

Exemplos

Exemplo

Note que todos os corpos são limpos, já que o elemento neutro da soma é idempotente e os demais elementos do anel são unidades, portanto todos os elementos são limpos.

Exemplo

O anel $\mathbb Z$ não é limpo, pois considerando que $3 \in \mathbb Z$ e que os únicos idempotentes deste anel são os triviais, podemos escrever 3 das seguintes formas:

$$3 = 0 + 3$$
 e $3 = 1 + 2$.

Logo 3 não é limpo e, assim, $\mathbb Z$ também não o é.

Limpeza em Anéis e Subanéis

Em geral, a limpeza de um anel A nem sempre garante a limpeza dos seus subanéis e vice-versa.

Limpeza em Anéis e Subanéis

Em geral, a limpeza de um anel A nem sempre garante a limpeza dos seus subanéis e vice-versa.

Exemplo

 \mathbb{R} é um anel limpo (corpo) e \mathbb{Z} subanel não é limpo.

Limpeza em Anéis e Subanéis

Em geral, a limpeza de um anel A nem sempre garante a limpeza dos seus subanéis e vice-versa.

Exemplo

 \mathbb{R} é um anel limpo (corpo) e \mathbb{Z} subanel não é limpo.

Exemplo

Considere o anel $\mathbb{R} \times \mathbb{Z}$ e seu subanel $\mathbb{R} \times \{0\}$. Temos que este subanel é limpo, mas o anel em questão não o é. De fato, tome o elemento $(1,3) \in \mathbb{R} \times \mathbb{Z}$ e note que este não é limpo, pois só é possível escrevê-lo das seguintes maneiras:

$$(1,3) = (1,3) + (0,0)$$
 e $(1,3) = (0,2) + (1,1)$.

Índice

- 1 1ª Temporada Jogadora 1
- 2 2ª Temporada Jogadora 2
- 3 3ª Temporada Combate

Para a definição de anéis r-limpos é preciso o conceito de um outro elemento de destaque na teoria.

Para a definição de anéis r-limpos é preciso o conceito de um outro elemento de destaque na teoria.

Definição

Um elemento $r \in A$ é dito regular se $\exists y \in A$ tal que ryr = r. Um **Anel Regular** é aquele em que todos seus elementos são regulares.

Para a definição de anéis r-limpos é preciso o conceito de um outro elemento de destaque na teoria.

Definição

Um elemento $r \in A$ é dito regular se $\exists y \in A$ tal que ryr = r. Um **Anel Regular** é aquele em que todos seus elementos são regulares.

Notação: Reg(A) é o conjunto de todos os elementos regulares do anel A.

Observação

Note que unidades e idempotentes são regulares.

Observação

Note que unidades e idempotentes são regulares.

De fato, para $u \in \mathcal{U}(A)$, temos que $\exists y = u^{-1} \in A$ tal que

$$uu^{-1}u = u$$
.

E para $e \in Id(A)$, temos

$$eee = e$$
.

Momento em que você confia que são contas

Lema

Seja A um anel comutativo regular. Qualquer $r \in A$ pode ser escrito como o produto entre um elemento idempotente e uma unidade de A.

Momento em que você confia que são contas

Lema

Seja A um anel comutativo regular. Qualquer $r \in A$ pode ser escrito como o produto entre um elemento idempotente e uma unidade de A.

Anderson e Camillo apresentam em [AC02] o seguinte resultado, no qual utiliza-se o Lema acima para demonstrá-lo:

Proposição

Um anel comutativo regular é um anel limpo.

Elementos r-Limpos

Definição

Seja A um anel, um elemento $x \in A$ é dito r-limpo se o mesmo pode ser escrito como a soma de um elemento regular e um idempotente de A, ou seja,

$$x = r + e$$
, $com\ r \in Reg(A)$; $e \in Id(A)$.

Anéis r-Limpos

Definição (Anel r-Limpo)

Um anel A qualquer é dito r-limpo se todos os seus elementos são r-limpos, ou seja,

$$\forall x \in A, x = r + e, com r \in Reg(A); e \in Id(A).$$

Elementos r-Limpos

Proposição

Em um anel A qualquer tem-se que unidades, elementos regulares e elementos idempotentes são r-limpos.

Elementos r-Limpos

Proposição

Em um anel A qualquer tem-se que unidades, elementos regulares e elementos idempotentes são r-limpos.

Ideia da Prova

De fato, tomando $u \in \mathcal{U}(A), r \in Reg(A), e \in Id(A)$ e como unidades são também regulares, temos que:

$$u = u + 0$$

$$r = r + 0$$

$$e = (2e - 1) + (1 - e)$$

Exemplos

Exemplo

- Todo corpo, além de limpo, também é r-limpo.
- O anel \mathbb{Z} não é r-limpo (3 $\in \mathbb{Z}$ não é r-limpo).

Índice

- 1 1ª Temporada Jogadora 1
- 2 2ª Temporada Jogadora 2
- 3 3ª Temporada Combate

Relação entre Anéis r-Limpos e Limpos

Note que todo anel limpo é também um anel r-limpo (lembre-se de que toda unidade é regular). Mas a recíproca nem sempre é verdadeira.

Relação entre Anéis r-Limpos e Limpos

Note que todo anel limpo é também um anel r-limpo (lembre-se de que toda unidade é regular). Mas a recíproca nem sempre é verdadeira.

Nahid Asharafi e Ebrahim Nasibi apresentam em [AN13] o exemplo de um anel r-limpo que não é limpo, conhecido como Exemplo de Bergman, cuja construção pode ser encontrada em [Ha77].

Relação entre Anéis r-Limpos e Limpos

Note que todo anel limpo é também um anel r-limpo (lembre-se de que toda unidade é regular). Mas a recíproca nem sempre é verdadeira.

Nahid Asharafi e Ebrahim Nasibi apresentam em [AN13] o exemplo de um anel r-limpo que não é limpo, conhecido como Exemplo de Bergman, cuja construção pode ser encontrada em [Ha77].

Mais adiante veremos algumas condições para que anéis r-limpos sejam também limpos.

r-Limpeza em Anéis e Subanéis

Em geral, a r-limpeza de um anel A nem sempre garante a limpeza dos seus subanéis e vice-versa. Para isso, podemos considerar os mesmos exemplos no caso de limpeza vistos inicialmente.

r-Limpeza em Anéis e Subanéis

Em geral, a r-limpeza de um anel A nem sempre garante a limpeza dos seus subanéis e vice-versa. Para isso, podemos considerar os mesmos exemplos no caso de limpeza vistos inicialmente.

Temos também o seguinte argumento para um dos casos.

r-Limpeza em Anéis e Subanéis

Em geral, a r-limpeza de um anel A nem sempre garante a limpeza dos seus subanéis e vice-versa. Para isso, podemos considerar os mesmos exemplos no caso de limpeza vistos inicialmente.

Temos também o seguinte argumento para um dos casos.

Considere A um anel qualquer e seu subanel trivial $\{0\}$, logo

$$0 = 0 + 0$$
, com $0 \in Reg(A)$; $0 \in Id(A)$,

mostrando que $\{0\}$ é um anel r-limpo. Sendo assim, se a r-limpeza de um subanel garantisse a r-limpeza do anel, teríamos que todo anel A seria r-limpo, o que não é verdade.

Chegou a hora dos resultados

A seguir, temos importantes resultados sobre r-limpeza, os quais são apresentados em [AN13] por Nasibi e Ashrafi.

Chegou a hora dos resultados

A seguir, temos importantes resultados sobre r-limpeza, os quais são apresentados em [AN13] por Nasibi e Ashrafi.

Na verdade, tais resultados também são válidos se considerarmos limpeza de anéis (cujas demonstrações são bem análogas em relação aos dois casos).

```
    1ª Temporada - Jogadora 1
    2ª Temporada - Jogadora 2
    3ª Temporada - Combate
```

Qualquer imagem homomórfica de um anel limpo (r-limpo) é também um anel limpo (r-limpo).

Qualquer imagem homomórfica de um anel limpo (r-limpo) é também um anel limpo (r-limpo).

Ideia da Prova

Consideremos A um anel limpo, B um anel qualquer e um homomorfismo $\phi: A \to B$. Para mostrar que $Im(\phi)$ é um anel limpo, tome $x \in A$, com $u \in \mathcal{U}(A)$; $e \in Id(A)$:

$$x = u + e \Rightarrow \phi(x) = \phi(u) + \phi(e) \in B$$

Qualquer imagem homomórfica de um anel limpo (r-limpo) é também um anel limpo (r-limpo).

Ideia da Prova

Consideremos A um anel limpo, B um anel qualquer e um homomorfismo $\phi: A \to B$. Para mostrar que $Im(\phi)$ é um anel limpo, tome $x \in A$, com $u \in \mathcal{U}(A)$; $e \in Id(A)$:

$$x = u + e \Rightarrow \phi(x) = \phi(u) + \phi(e) \in B$$
,

em que

$$\phi(1) = \phi(u \cdot u^{-1}) = \phi(u) \cdot \phi(u^{-1})$$
$$[\phi(e)]^{2} = \phi(e) \cdot \phi(e) = \phi(e^{2}) = \phi(e),$$

isto é, $\phi(u) \in U(Im(\phi))$ e $\phi(e) \in Id(Im(\phi))$.

```
    1ª Temporada - Jogadora 1
    2ª Temporada - Jogadora 2
    3ª Temporada - Combate
```

Qualquer imagem homomórfica de um anel limpo (r-limpo) é também um anel limpo (r-limpo).

Qualquer imagem homomórfica de um anel limpo (r-limpo) é também um anel limpo (r-limpo).

Ideia da Prova

Agora, para mostrar que $Im(\phi)$ é um anel r-limpo, tome $r \in Reg(A)$. Temos:

$$r = ryr \in A \implies \phi(r) = \phi(r)\phi(y)\phi(r) \in B.$$

Qualquer imagem homomórfica de um anel limpo (r-limpo) é também um anel limpo (r-limpo).

Ideia da Prova

Agora, para mostrar que $Im(\phi)$ é um anel r-limpo, tome $r \in Reg(A)$. Temos:

$$r = ryr \in A \implies \phi(r) = \phi(r)\phi(y)\phi(r) \in B.$$

Assim, para $x \in A$, com $r \in Reg(A)$; $e \in Id(A)$:

$$x = r + e \Rightarrow \phi(x) = \phi(r) + \phi(e),$$

com $\phi(r) \in Reg(Im(\phi))$ e $\phi(e) \in Id(Im(\phi))$.

Corolário

Todo anel quociente de um anel r-limpo (limpo) é também um anel r-limpo (limpo).

Corolário

Todo anel quociente de um anel r-limpo (limpo) é também um anel r-limpo (limpo).

Observação

A recíproca deste resultado geralmente não é verdadeira. Por exemplo, anéis quocientes \mathbb{Z}_p , com p primo, são anéis limpos (já que são corpos), logo r-limpos, porém vimos que \mathbb{Z} não é r-limpo.

Teorema

Se A é um anel comutativo, então A[x] não é limpo.

Teorema

Se A é um anel comutativo, então A[x] não é limpo.

Ideia da Prova

• Suponha por absurdo que $x \in A[x]$ é limpo: x = u(x) + e(x), com $u(x) \in U(A[x])$; $e(x) \in Id(A[x])$;

Teorema

Se A é um anel comutativo, então A[x] não é limpo.

Ideia da Prova

- Suponha por absurdo que $x \in A[x]$ é limpo: x = u(x) + e(x), com $u(x) \in U(A[x])$; $e(x) \in Id(A[x])$;
- $x e(x) = u(x) \Rightarrow x e = u(x)$, pois $e(x) = e \in Id(A)$;

Teorema

Se A é um anel comutativo, então A[x] não é limpo.

Ideia da Prova

- Suponha por absurdo que $x \in A[x]$ é limpo: x = u(x) + e(x), com $u(x) \in U(A[x])$; $e(x) \in Id(A[x])$;
- $x e(x) = u(x) \Rightarrow x e = u(x)$, pois $e(x) = e \in Id(A)$;
- Tomando $u^{-1}(x) = (b_0 + ... + b_n x^n) \in A[x]$, temos que $(x e) \cdot u^{-1}(x) = 1$;

Ideia da Prova

• Pela distributividade e igualdade polinomial:

$$\begin{cases} b_n &= 0 \\ (b_{n-1} - eb_n) = 0 & \Rightarrow b_{n-1} = 0 \\ & \vdots \\ (b_0 - eb_1) = 0 & \Rightarrow b_0 = 0 \end{cases}$$

• Logo $u^{-1}(x) = 0$, o que é uma contradição, já que é uma unidade em A[x].

Teorema

Se A é um anel comutativo, então A[x] não é r-limpo.

Teorema

Se A é um anel comutativo, então A[x] não é r-limpo.

Ideia da Prova

• Suponha por absurdo que $x \in A[x]$ é r-limpo: x = r(x) + e(x), com $r(x) \in Reg(A[x])$; $e(x) \in Id(A[x])$;

Teorema

Se A é um anel comutativo, então A[x] não é r-limpo.

Ideia da Prova

- Suponha por absurdo que $x \in A[x]$ é r-limpo: x = r(x) + e(x), com $r(x) \in Reg(A[x])$; $e(x) \in Id(A[x])$;
- $x e(x) = r(x) \in Reg(A[x])$ e, ainda, $e(x) = e \in Id(A)$ (pois em anéis abelianos, Id(A) = Id(A[x]));

Teorema

Se A é um anel comutativo, então A[x] não é r-limpo.

Ideia da Prova

- Suponha por absurdo que $x \in A[x]$ é r-limpo: x = r(x) + e(x), com $r(x) \in Reg(A[x])$; $e(x) \in Id(A[x])$;
- $x e(x) = r(x) \in Reg(A[x])$ e, ainda, $e(x) = e \in Id(A)$ (pois em anéis abelianos, Id(A) = Id(A[x]));
- Logo, x e = r(x);

Teorema

Se A é um anel comutativo, então A[x] não é r-limpo.

Temos o seguinte resultado:

Proposição: Se A é um anel comutativo e $f(x) = \sum_{i=0}^{m} a_i x^i \in A[x]$

é um elemento regular, então a_0 é regular e a_i , para cada i, é nilpotente.

Teorema

Se A é um anel comutativo, então A[x] não é r-limpo.

Temos o seguinte resultado:

Proposição: Se A é um anel comutativo e $f(x) = \sum_{i=0}^{n} a_i x^i \in A[x]$

é um elemento regular, então a_0 é regular e a_i , para cada i, é nilpotente.

Ideia da Prova

• Pela proposição acima, como x - e = r(x), temos que 1 é nilpotente, o que é uma contradição.

Teorema

Se A[[x]] é limpo se, e somente se, A é limpo.

Teorema

Se A[[x]] é limpo se, e somente se, A é limpo.

Ideia da Prova

 (\Rightarrow)

$$\pi: A[[x]] \to A$$

$$\sum_{i=0}^{\infty} a_i x^i \mapsto a_0$$

Mostra-se que π é um epimorfismo, logo, A é uma imagem homomórfica de A[[x]], portanto, um anel limpo.

Teorema

Se A[[x]] é limpo se, e somente se, A é limpo.

Ideia da Prova

(⇔)

• Seja $a_0 + a_1x + a_2x^2 + ... = f \in A[[x]]$ e note que $a_0 = e + u$, com $e \in Id(A)$, $u \in U(A)$;

Teorema

Se A[[x]] é limpo se, e somente se, A é limpo.

Ideia da Prova

(⇔)

- Seja $a_0 + a_1x + a_2x^2 + ... = f \in A[[x]]$ e note que $a_0 = e + u$, com $e \in Id(A)$, $u \in U(A)$;
- $f = e + (u + a_1x + a_2x^2 + \ldots);$

Teorema

Se A[[x]] é limpo se, e somente se, A é limpo.

Ideia da Prova

(⇔)

- Seja $a_0 + a_1x + a_2x^2 + ... = f \in A[[x]]$ e note que $a_0 = e + u$, com $e \in Id(A)$, $u \in U(A)$;
- $f = e + (u + a_1x + a_2x^2 + ...);$
- Temos $u \in U(A) \Rightarrow u_k = (u + a_1 x + a_2 x^2 + ...) \in U(A[[x]]),$ logo $f = u_k + e$, com $u_k \in U(A[[x]]), e \in Id(A[[x]]).$

Teorema

Se A[[x]] é r-limpo então A é r-limpo.

Teorema

Se A[[x]] é r-limpo então A é r-limpo.

Ideia da Prova

Considerando o epimorfismo

$$\pi: A[[x]] \to A$$

$$\sum_{i=0}^{\infty} a_i x^i \mapsto a_0$$

temos que A é uma imagem homomórfica de A[[x]] o qual é r-limpo por hipótese. Portanto A é r-limpo.

Som de suspense neste momento

Pergunta $\in \mathbb{N}$:

E a recíproca, não é válida?

Som de suspense neste momento

Pergunta $\in \mathbb{N}$:

E a recíproca, não é válida?

Resposta: Depende!

Som de suspense neste momento

Pergunta $\in \mathbb{N}$:

E a recíproca, não é válida?

Resposta: Depende!

Spoiler: Tem uma condição sobre o anel *A* para valer a recíproca.

Aguenta aí, que no episódio final será revelada.

E continuam os resultados...

Teorema

Um produto direto $\prod_{i \in I} A_i$ de anéis A_i é r-limpo (limpo) se, e somente se, cada A_i é r-limpo (limpo).

E continuam os resultados...

Teorema

Um produto direto $\prod_{i \in I} A_i$ de anéis A_i é r-limpo (limpo) se, e somente se, cada A_i é r-limpo (limpo).

Ideia da Prova

 (\Rightarrow)

$$f: \prod_{i \in I} A_i \rightarrow A_i$$
$$(x_i)_{i \in I} \mapsto x_i$$

Como $Im(f) = A_i$, basta motrar que f é um homomorfismo.

E continuam os resultados...

Teorema

Um produto direto $\prod_{i \in I} A_i$ de anéis A_i é r-limpo (limpo) se, e somente se, cada A_i é r-limpo (limpo).

Ideia da Prova

$$(\Leftarrow) \ X = (x_i)_{i \in I} \in \prod_{i \in I} A_i:$$
$$X = (u_i + e_i)_{i \in I}, \text{ com } u_i \in U(A_i), e_i \in Id(A_i).$$

E continuam os resultados...

Teorema

Um produto direto $\prod_{i \in I} A_i$ de anéis A_i é r-limpo (limpo) se, e somente se, cada A_i é r-limpo (limpo).

Ideia da Prova

$$(\Leftarrow) \ X = (x_i)_{i \in I} \in \prod_{i \in I} A_i:$$

$$X = (u_i + e_i)_{i \in I}, \text{ com } u_i \in U(A_i), \ e_i \in Id(A_i).$$
 Logo,
$$X = (u_i)_{i \in I} + (e_i)_{i \in I}. \text{ Mostra-se que } (u_i)_{i \in I} \in U\left(\prod_{i \in I} A_i\right) \text{ e}$$

$$(e_i)_{i\in I}\in Id\left(\prod_{i\in I}A_i\right).$$

Vamos agora conhecer algumas condições que garantem a limpeza de um anel r-limpo.

Vamos agora conhecer algumas condições que garantem a limpeza de um anel r-limpo.

Teorema (AN13)

Seja A um anel cujos idempotentes sejam apenas os triviais. Se A é r-limpo então A é limpo.

Demonstração: Vamos para o quadro, fazer bonito!

Corolário

Seja A um anel sem divisores de zero. Se A é r-limpo então A é limpo.

Corolário

Seja A um anel sem divisores de zero. Se A é r-limpo então A é limpo.

Ideia da Prova

Note que os únicos idempotentes de A sem divisores de zero são os triviais, já que,

$$x^2 = x \Rightarrow x(x-1) = 0 \Rightarrow x = 0$$
 ou $x = 1$.

Teorema (AN13)

Seja A um anel comutativo tal que cada par de idempotentes são ortogonais (ef = $0, \forall e, f \in Id(A)$). Se A é r-limpo então A é limpo.

Demonstração: Essa também é boa para o quadro!

Teorema (AN13*)

Seja A um anel abeliano (todos os seus idempotentes são centrais). Se A é r-limpo então A é limpo.

Repeat na música do suspense

Lembram da pergunta no início desta temporada?

Repeat na música do suspense

Lembram da pergunta no início desta temporada?

Quando vale A r-limpo implicar em A[[x]] r-limpo?

Repeat na música do suspense

Lembram da pergunta no início desta temporada?

Quando vale A r-limpo implicar em A[[x]] r-limpo?

Resposta: Quando A é abeliano!

Tá acabando!

Teorema

Seja A um anel abeliano. Se A é r-limpo, então A[[x]] é r-limpo.

Tá acabando!

Teorema

Seja A um anel abeliano. Se A é r-limpo, então A[[x]] é r-limpo.

Ideia da Prova

Pelo teorema anterior, temos que A é limpo o que implica que A[[x]] também é limpo, portanto r-limpo.

Referências bibliográficas

- [AC02] ANDERSON, D.D.; CAMILO, V.P. Comutative rings whose elements are a sum of a unit and idempotent, *Communications in Algebra*, v. 30, n. 2, p. 3327-3336, 2002.
- [AN13] ASHRAFI, N.; NASIBI, E. r-Clean Rings, *Mathematical Reports*, v. 15(65), n. 2, p. 125-132, 2013.
- [AN13*] ASHRAFI, N.; NASIBI, E. Rings in which elements are the sum of an idempotent and a regular element., *Bulletin of the Iranian Mathematical Society*, v. 39, n.3, p. 579-588, 2013.
- [BR13] BURGESS, W. D.; RAPHAEL, R. On embedding rings in clean rings, *Communications in Algebra*, v. 41, 2013.

Referências bibliográficas

- [Ch08] CHEN, W. On clean rings and clean elements, Southeast Asian Bulletin of Mathematics, v. 32, p. 0-6, 2008.
- [F21] FONSECA, A.C. Anéis Limpos e r-Limpos, *Dissertação* (*Licenciatura em Matemática*), Universidade Estadual de Feira de Santana, 2021.
- [Ha77] HANDELMAN, D. Perspectivity and cancellation in regular rings, *Journal of Algebra*, v. 48, p. 1-16, 1977.
- [HN01] HAN, J.; NICHOLSON, W. K. Extension of clean rings, *Communications in Algebra*, v. 29, p. 2589-2595, 2001.
- [Ni99] NICHOLSON, W. K. Strongly Clean Rings and Fitting's Lemma, *Communications in Algebra*, v. 27,(8), p. 3583-3592, 1999

1ª Temporada - Jogadora 1
 2ª Temporada - Jogadora 2
 3ª Temporada - Combate

$$\emptyset \beta \mathbb{R} i g \alpha d \alpha \quad \rho \sum \ell \alpha \quad \alpha t \sum \mathbb{N} \varsigma \tilde{\alpha} \emptyset !$$