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Motivation

Defining Graphical Models

A graphical model is a probabilistic model for which a graph
expresses the conditional dependence structure between random
variables.

Nodes: Individuals, Groups of People, Brain Regions, ...

Edges: Undirected, Directed, Weighted, ...
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Resting State fMRI

The main function of the brain: Reflexive (task-evoked
responses) X Intrinsic (resting state);

functional Magnetic Resonance Imaging (fMRI);

Brain Connectivity.
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Brain connectivity

Brain connectivity studies the relation between distinct units within
a nervous system considering anatomical links (anatomical
connectivity), statistical dependencies (functional connectivity) or
causal interactions (effective connectivity) (Olaf Sporns, 2007).

fnagi-06-00105-g001.jpg (JPEG Image, 992 × 547 pixels) http://www.frontiersin.org/files/Articles/69407/fnagi-06-001...

1 of 1 18/08/2014 16:51

The brain connectivity of the DMN in the young (left panel) and old (right panel) groups (Wang et al., 2014).
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Multiregression Dynamic Model

In MDM, the joint predictive likelihood is written in a closed form
and so it can be easily used for Bayes’ factor model selection;

MDM assumes non-Gaussianity which is currently used as a feature
to fit models (e.g. through ICA);

It is known in the context of these processes that although the
existence of a connection seems to be enduring the strength of a
connection is dynamic. The MDM class directly models this
phenomenon;

It can distinguish models that are equivalent when the model
degenerates into the static case. Furthermore the way it
distinguishes these is consistent with there being an underlying
causal directionality in a way made clear by Pearl(2000) which
makes the difference in statically equivalent models interpretable.
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Linear MDM

Observation equations

Yt(r) = Ft(r)′θt(r) + vt(r), vt(r) ∼ N (0,Vt(r));

System equation

θt = θt−1 + wt , wt ∼ N (0,Wt) and Wt(r) = Vt(r)W∗
t (r);

Initial information

(θ0|y0) ∼ N (m0,C0) and C0(r) = Vt(r)C∗0(r).

Unknown Vt(r): (φ(r)|y0) ∼ G
(

n0(r)
2 , d0(r)2

)
, φ(r) = V (r)−1;

Unknown Wt(r): W∗
t = 1−δ

δ C∗
t−1; where the discount factor

δ ∈ (0, 1].
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Node Parent Score
1 No -1469

2 -1567
3 -1646

2 and 3 -1655

2 No -1169
1 -1140
3 -1110

1 and 3 -997

3 No -1119
1 -1193
2 -1060

1 and 2 -1056

Evidence for each node under all possible sets of
parents. The higher score the higher evidence for this
particular model.

The Search Methods

The MDM-IPA (Integer
Programing Algorithms; Cussens,
2011): DAG constraints:

Node 1→ Node 2← Node 3;

The MDM-DGM: the best model
for each node:

Node 1
↙ ↘

Node 2←→ Node 3
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Group Analysis Methods

Virtual-typical-subject (VTS):
The same graphical structure and connectivity strength

All Subjects and so Group Network:
Node 1→ Node 2→ Node 3

Common-structure (CS):
The same graphical structure but different connectivity
strength

Subject 1: Node 1→ Node 2→ Node 3;
Subject 2: Node 1→ Node 2→ Node 3;
Subject 3: Node 1→ Node 2→ Node 3;
...
Group Network: Node 1→ Node 2→ Node 3 9 / 30
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Group Analysis Methods

Different graphical structure and connectivity strength
Subject 1: Node 1→ Node 2→ Node 3;
Subject 2: Node 1→ Node 2→ Node 3;
Subject 3: Node 1←Node 2←Node 3;
...

Individual-structure (IS):
The learning network results are pooled into a single network

Group Network: Node 1→ Node 2→ Node 3

Group-structure (GS):
It studies group homogeneity through cluster analysis

Subgroup Network1: Node 1→ Node 2→ Node 3
Subgroup Network2: Node 1←Node 2←Node 3 10 / 30
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Formulation for separations between subjects

One simple way for defining a suitable separation between subject i
&j is

dij = cij(mI )− cij(mG )

where cij(mI ) is the max log marginal likelihood score of subject i
& j when these are treated as from different graphs & cij(mG ) is
the max score of the two subjects treated as if the same

cij(mI ) =
n∑

r=1

{ci (r ,miI (r)) + cj(r ,mjI (r))}

Fact

These are linear functions of quantities we have already calculated
so available!
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Some properties of the separation measure

For the MDM-IPA, the scores are exactly the LPL

The pairwise logBF separation is symmetric

If the estimated individual graphical structures for subjects i
and j are the same, then d(i , j) = 0

By definition, the separation d(i , j) is non-negative
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Results from simulation study
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Results from simulation study
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Results from simulation study
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Results from II simulation study
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Data Description

There is information for three sessions for each one of 25
subjects;

197 fMRI resting-state time-points;

4 ROI’s:

Region 1 - Posterior Cingulate (PC);
Region 2 - Anterior Frontal (AF);
Region 3 - Left Lateral Parietal (LP);
Region 4 - Right Lateral Parietal (RP);
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Results
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Dendogram of real fMRI dada using the pairwise logBF separation for 3
sessions of each 4 subjects selected randomly.
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Results
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Dendogram of real fMRI dada using the pairwise logBF separation for all
25 subjects.
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Results from Real Datasets
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Results from II Real Datasets
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Dendogram of real fMRI dada using the pairwise logBF separation for 12
subjects.
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Results from II Real Datasets
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The proportion of male (left) and the proportion of subjects who have
high trait anxiety (right) by subgroup.
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Results from II Real Datasets

	  	  
	  
	  

	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  
	  

Nodes:	  
	  	  1	  -‐	  Amygdala-‐L	  
	  	  2	  -‐	  Amygdala-‐R	  
	  	  3	  -‐	  VMPFC	  
	  	  4	  -‐	  DLPFC-‐L	  
	  	  5	  -‐	  DLPFC-‐R	  
	  	  6	  -‐	  PostInsula-‐L	  
	  	  7	  -‐	  PostInsula-‐R	  
	  	  8	  -‐	  AntInsula-‐L	  
	  	  9	  -‐	  AntInsula-‐R	  
10	  -‐	  OFC-‐L	  
11	  -‐	  OFC-‐R	  
12	  -‐	  aMCC	  
	  

The connectivity strength standardised difference for a particular edge
i → j , where i indexes rows and j columns
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HMDM

Observation equations

Yt = F′1tθ1t + v1t , v1t ∼ N (0,V1t);

Structural equations

θ1t = F′2tθ2t + v2t , v2t ∼ N (0,V2t);
...
θkt = F′ktθkt + vkt , vkt ∼ N (0,Vkt);

System equation

θkt = Gtθk,t−1 + wt , wt ∼ N (0,Wt).
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Results

The posterior mean and 95% CI for connectivities of GS-subgroup 1.
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Results

The posterior mean and 95% CI for connectivities of GS-subgroup 2.
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Results

Model
DIC Running Time (hour)

GS-subgroup1 GS-subgroup2 GS-subgroup1 GS-subgroup2

MDM 49,992 110,771 0.39 0.97

HMDM 2L 49,671 110,342 1.06 2.67

HMDM 3L 368,394 265,739 2.64 9.98

The Deviance Information Criterion (DIC) and the running time (in hour)
for the HMDM with two level for brain and subject and the HMDM with
three level for brain, session and subject.
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Conclusions

The simulated data given ground truth resurrected the
appropriate clusters

In real data example - although replicates on individual
subjects gave different graphs - these subjects were nearly
always clustered together. This necessary condition suggests
we might be getting things right! Same treatment for same
subject.

In general, the HMDM provides statistics more precise than
the MDM.
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