Almost topological spaces and modal axioms

Hércules de Araujo Feitosa

hercules.feitosa@unesp.br

UNESP - College of Sciences - Bauru Department of Mathematics

VII Encontro da Pós-Graduação em Matemática da UFBA November, 4 - 8, 2019

FEITOSA, H. A. (Unesp - FC - Bauru)

UFBA - 2019 1/31

Table of Contents

- Almost topological spaces
- 2 Tarski consequence operator
- 3 TK-algebras
- The logic of deductibility
- 5 Tarski spaces as model for TK
- 6 TK plus the modal axiom B
- TK plus the modal axiom 5

8 Bibliography

Table of Contents

Almost topological spaces

- Tarski consequence operator
- 3 TK-algebras
- 4 The logic of deductibility
- 5 Tarski spaces as model for TK
- 6 TK plus the modal axiom B
 - 7 TK plus the modal axiom 5

8 Bibliography

FEITOSA, H. A. (Unesp - FC - Bauru)

Image: A match a ma

An almost topological space is a pair (E, Ω) such that E is a set and Ω ⊆ P(E) satisfies the following condition:
 (ats) B ⊆ Ω ⇒ ∪B ∈ Ω.

- **3** • •

- An almost topological space is a pair (E, Ω) such that E is a set and Ω ⊆ P(E) satisfies the following condition:
 (ats) B ⊆ Ω ⇒ ∪B ∈ Ω.
- The collection Ω is called almost topology and each member of Ω is an open set of (E, Ω).

- An almost topological space is a pair (E, Ω) such that E is a set and Ω ⊆ P(E) satisfies the following condition:
 (ats) B ⊆ Ω ⇒ ∪B ∈ Ω.
- The collection Ω is called almost topology and each member of Ω is an open set of (E, Ω).
- A set A ∈ P(E) is closed set when its complement relative to E is an open of (E, Ω).

→ ∃ →

FEITOSA, H. A. (Unesp - FC - Bauru)

- 4 ∃ ▶

• The interior of A in the space (E, Ω) is the set: (*int*) $\mathring{A} =_{df} \cup \{X \in \Omega : X \subseteq A\}.$

- The interior of A in the space (E, Ω) is the set: (*int*) $\mathring{A} =_{df} \cup \{X \in \Omega : X \subseteq A\}.$
- The **closure** of A in the space (E, Ω) is the set: (cl) $\overline{A} =_{df} \cap \{X : X^C \in \Omega \land A \subseteq X\}.$

- The interior of A in the space (E, Ω) is the set: (*int*) $\mathring{A} =_{df} \cup \{X \in \Omega : X \subseteq A\}.$
- The **closure** of A in the space (E, Ω) is the set: (cl) $\overline{A} =_{df} \cap \{X : X^C \in \Omega \land A \subseteq X\}.$
- The set \emptyset is open in every almost topological space (E, Ω) .

- The interior of A in the space (E, Ω) is the set: (*int*) $\mathring{A} =_{df} \cup \{X \in \Omega : X \subseteq A\}.$
- The **closure** of A in the space (E, Ω) is the set: (cl) $\overline{A} =_{df} \cap \{X : X^C \in \Omega \land A \subseteq X\}.$
- The set \emptyset is open in every almost topological space (E, Ω) .
- The domain E is closed in (E, Ω) .

- The **interior** of A in the space (E, Ω) is the set: (*int*) $\mathring{A} =_{df} \cup \{X \in \Omega : X \subseteq A\}.$
- The **closure** of A in the space (E, Ω) is the set: (cl) $\overline{A} =_{df} \cap \{X : X^C \in \Omega \land A \subseteq X\}.$
- The set \emptyset is open in every almost topological space (E, Ω) .
- The domain E is closed in (E, Ω) .
- Any intersection of closed sets of (*E*, Ω) is a closed set of (*E*, Ω).

イロト イヨト イヨト イ

• If (E, Ω) is an almost topological space and $A, B \subseteq E$, then:

< ∃ ►

- If (E, Ω) is an almost topological space and $A, B \subseteq E$, then:
- \overline{A} is closed and \mathring{A} is open in (E, Ω) .

- If (E, Ω) is an almost topological space and $A, B \subseteq E$, then:
- \overline{A} is closed and \mathring{A} is open in (E, Ω) .
- $\mathring{A} \subseteq A \subseteq \overline{A}$.

- If (E, Ω) is an almost topological space and $A, B \subseteq E$, then:
- \overline{A} is closed and \mathring{A} is open in (E, Ω) .
- $\mathring{A} \subseteq A \subseteq \overline{A}$.

•
$$\mathring{A} \subseteq \mathring{A}$$
.

- If (E, Ω) is an almost topological space and $A, B \subseteq E$, then:
- \overline{A} is closed and \mathring{A} is open in (E, Ω) .
- $\mathring{A} \subseteq A \subseteq \overline{A}$.
- $\mathring{A} \subseteq \mathring{A}$.
- $\overline{\overline{A}} \subseteq \overline{A}$.

- If (E, Ω) is an almost topological space and $A, B \subseteq E$, then:
- \overline{A} is closed and \mathring{A} is open in (E, Ω) .
- $\mathring{A} \subseteq A \subseteq \overline{A}$.
- $\mathring{A} \subseteq \mathring{A}$.
- $\overline{\overline{A}} \subseteq \overline{A}$.
- $\overline{E} \subseteq E$.

- If (E, Ω) is an almost topological space and $A, B \subseteq E$, then:
- \overline{A} is closed and \mathring{A} is open in (E, Ω) .
- $\mathring{A} \subseteq A \subseteq \overline{A}$.
- $\mathring{A} \subseteq \mathring{A}$.
- $\overline{\overline{A}} \subseteq \overline{A}$.
- $\overline{E} \subseteq E$.
- $A \subseteq B \Rightarrow \mathring{A} \subseteq \mathring{B}$.

- If (E, Ω) is an almost topological space and $A, B \subseteq E$, then:
- \overline{A} is closed and \mathring{A} is open in (E, Ω) .
- $\mathring{A} \subseteq A \subseteq \overline{A}$.
- $\mathring{A} \subseteq \mathring{A}$.
- $\overline{\overline{A}} \subseteq \overline{A}$.
- $\overline{E} \subseteq E$.
- $A \subseteq B \Rightarrow \mathring{A} \subseteq \mathring{B}$.
- $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$.

Including conditions

FEITOSA, H. A. (Unesp - FC - Bauru)

Image: A match a ma

Including conditions

An almost topological space (E, Ω) is 0-closed when it holds: (zc) φ = ∅.

FEITOSA, H. A. (Unesp - FC - Bauru)

< ≣ ►

Including conditions

- An almost topological space (E, Ω) is 0-closed when it holds:
 (zc) φ = ∅.
- A topological space (E, Ω) is an almost topological space 0-closed such that it holds: (ucl) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Table of Contents

- Almost topological spaces
- 2 Tarski consequence operator
 - 3 TK-algebras
- 4 The logic of deductibility
- 5 Tarski spaces as model for TK
- 6 TK plus the modal axiom B
 - 7 TK plus the modal axiom 5

8 Bibliography

FEITOSA, H. A. (Unesp - FC - Bauru)

イロト イヨト イヨト イ

A consequence operator on E is a function ⁻ : P(E) → P(E) such that, for every A, B ∈ P(E):
(i) A ⊆ Ā
(ii) A ⊆ B ⇒ Ā ⊆ B
(iii) ā ⊆ Ā.

▲ 注 ▶ ▲

- A consequence operator on E is a function ⁻ : P(E) → P(E) such that, for every A, B ∈ P(E):
 (i) A ⊆ Ā
 (ii) A ⊆ B ⇒ Ā ⊆ B
 (iii) Ā ⊆ Ā.
- Of course, from (i) and (iii), the equality $\overline{\overline{A}} = \overline{A}$ holds, for every $A \subseteq E$.

- A consequence operator on E is a function ⁻ : P(E) → P(E) such that, for every A, B ∈ P(E):
 (i) A ⊆ Ā
 (ii) A ⊆ B ⇒ Ā ⊆ B
 (iii) Ā ⊆ Ā.
- Of course, from (i) and (iii), the equality $\overline{A} = \overline{A}$ holds, for every $A \subseteq E$.
- A Tarski' space (Tarski's deductive system or closure space) is a pair (*E*,⁻) such that *E* is a non-empty set and ⁻ is a consequence operator on *E*.

FEITOSA, H. A. (Unesp - FC - Bauru)

Image: A match a ma

• Let $(E, {}^{-})$ be a Tarski space. The set A is **closed** in $(E, {}^{-})$ when $\overline{A} = A$, and A is **open** when its complement relative to E, denoted by A^{C} , is closed in $(E, {}^{-})$.

- Let (E, -) be a Tarski space. The set A is **closed** in (E, -) when $\overline{A} = A$, and A is **open** when its complement relative to E, denoted by A^{C} , is closed in (E, -).
- Since, for all $A \subseteq E$, we have $\overline{\overline{A}} = \overline{A}$, then \overline{A} is closed in (E, -).

- Let (E, -) be a Tarski space. The set A is **closed** in (E, -) when $\overline{A} = A$, and A is **open** when its complement relative to E, denoted by A^{C} , is closed in (E, -).
- Since, for all $A \subseteq E$, we have $\overline{\overline{A}} = \overline{A}$, then \overline{A} is closed in (E, \overline{A}) .
- In (E, -) every intersection of closed sets is also a closed set.

- Let (E, -) be a Tarski space. The set A is **closed** in (E, -) when $\overline{A} = A$, and A is **open** when its complement relative to E, denoted by A^{C} , is closed in (E, -).
- Since, for all $A \subseteq E$, we have $\overline{\overline{A}} = \overline{A}$, then \overline{A} is closed in (E, \overline{A}) .
- In (E, -) every intersection of closed sets is also a closed set.
- Ø and E correspond to the least and the greatest closed sets, respectively, associated to the consequence operator [−].

Closure and interior

FEITOSA, H. A. (Unesp - FC - Bauru)
• The set \overline{A} is called the closure of A.

- The set \overline{A} is called the closure of A.
- $\overline{A} = \cap \{F : A \subseteq F \land F \text{ is closed}\}.$

- The set \overline{A} is called the closure of A.
- $\overline{A} = \cap \{F : A \subseteq F \land F \text{ is closed}\}.$
- The interior of A is the set $\mathring{A} = \bigcup \{ G : G \subseteq A \land G \text{ is open} \}.$

• The set \overline{A} is called the closure of A.

•
$$\overline{A} = \cap \{F : A \subseteq F \land F \text{ is closed}\}.$$

- The interior of A is the set $\mathring{A} = \bigcup \{G : G \subseteq A \land G \text{ is open} \}.$
- The interior $\mathring{A} = \overline{A^C}^C$ is open in (E, -).

Inter-relations

FEITOSA, H. A. (Unesp - FC - Bauru)

(日)

Inter-relations

 If (E, Ω) is an almost topological space and ⁻ is a function that maps to the set A its closure A
, then (E,⁻) is a Tarski space.

Inter-relations

- If (E, Ω) is an almost topological space and ⁻ is a function that maps to the set A its closure A, then (E,⁻) is a Tarski space.
- If (E,⁻) is a Tarski space and Ω = {X^C ⊆ E : X = X̄}, then (E, Ω) is an almost topological space.

Table of Contents

- Almost topological spaces
 - 2) Tarski consequence operator

3 TK-algebras

- 4 The logic of deductibility
- 5 Tarski spaces as model for TK
- 6 TK plus the modal axiom B
 - 7 TK plus the modal axiom 5

8 Bibliography

FEITOSA, H. A. (Unesp - FC - Bauru)

Image: A match a ma

• The definition of a TK-algebra introduces the notions of consequence operator in the context of algebraic structures.

- The definition of a TK-algebra introduces the notions of consequence operator in the context of algebraic structures.
- A TK-algebra is a sextuple A = (A, 0, 1, ∨, ∼, •) such that (A, 0, 1, ∨, ∼) is a Boolean algebra and • is a new operator, called Tarski operator, such that:

(i)
$$a \lor \bullet a = \bullet a$$

(ii) $\bullet a \lor \bullet (a \lor b) = \bullet (a \lor b)$
(iii) $\bullet (\bullet a) = \bullet a$.

- The definition of a TK-algebra introduces the notions of consequence operator in the context of algebraic structures.
- A TK-algebra is a sextuple A = (A, 0, 1, ∨, ∼, •) such that (A, 0, 1, ∨, ∼) is a Boolean algebra and • is a new operator, called Tarski operator, such that:

(i)
$$a \lor \bullet a = \bullet a$$

(ii) $\bullet a \lor \bullet (a \lor b) = \bullet (a \lor b)$
(iii) $\bullet (\bullet a) = \bullet a$.

• (i)
$$\Leftrightarrow a \leq \bullet a$$

(ii) $\Leftrightarrow a \leq b \Rightarrow \bullet a \leq \bullet b$.

Table of Contents

- Almost topological spaces
- 2 Tarski consequence operator
- 3 TK-algebras
- 4 The logic of deductibility
 - 5) Tarski spaces as model for TK
- 6 TK plus the modal axiom B
 - 7 TK plus the modal axiom 5

8 Bibliography

The propositional logic TK is constructed over the propositional language L = {¬, ∨, →, ♦, p₁, p₂, p₃, ...} with the following axioms and rules:

 The propositional logic TK is constructed over the propositional language L = {¬, ∨, →, ♦, p₁, p₂, p₃, ...} with the following axioms and rules:

• (CPC)	arphi, if $arphi$ is a tautology
(TK_1)	$\varphi o ig \varphi$
(<i>TK</i> ₂)	$\blacklozenge \blacklozenge \varphi \to \blacklozenge \varphi$
(MP)	$rac{arphi ightarrow \psi, arphi}{\psi}$
(<i>RM</i> [♦])	$\frac{\vdash \varphi \to \psi}{\vdash \blacklozenge \varphi \to \blacklozenge \psi}.$

- The propositional logic TK is constructed over the propositional language L = {¬, ∨, →, ♦, p₁, p₂, p₃, ...} with the following axioms and rules:
- (CPC) (*TK*₁) (*TK*₂) (MP) (*RM*[•]) • (*P*) (*RM*[•]) • (*P*) • (*P*
- The TK-algebras are algebraic models for the logic TK.

- 4 同 ト 4 三 ト 4 三

With the dual operator of 🔶

FEITOSA, H. A. (Unesp - FC - Bauru)

(日)

FEITOSA, H. A. (Unesp - FC - Bauru)

(日)

- $\bullet \ \Box \varphi \Leftrightarrow \neg \blacklozenge \neg \varphi$
- (CPC) φ , if φ is a tautology

A D > A A > A > A

- $\exists \varphi \Leftrightarrow \neg \blacklozenge \neg \varphi$
- (CPC) φ , if φ is a tautology
- $(TK_1^*) \boxminus \varphi \to \varphi$

A D > A A > A > A

- $\bullet \ \Box \varphi \Leftrightarrow \neg \blacklozenge \neg \varphi$
- (CPC) φ , if φ is a tautology
- $(TK_1^*) \boxminus \varphi \to \varphi$
- $(TK_2^*) \boxminus \varphi \to \boxminus \boxminus \varphi$

- $\exists \varphi \Leftrightarrow \neg \blacklozenge \neg \varphi$
- (CPC) φ , if φ is a tautology
- $(TK_1^*) \boxminus \varphi \to \varphi$
- $(TK_2^*) \boxminus \varphi \to \Box \boxminus \varphi$
- The rule RM^{\boxminus} : (RM^{\boxminus}) $\frac{\vdash \varphi \rightarrow \psi}{\vdash \Box \varphi \rightarrow \Box \psi}$.

A (1) > A (2) > A

Table of Contents

- Almost topological spaces
- 2 Tarski consequence operator
- 3 TK-algebras
- 4 The logic of deductibility
- 5 Tarski spaces as model for TK
- 6 TK plus the modal axiom B
 - 7 TK plus the modal axiom 5

8 Bibliography

Valuation

FEITOSA, H. A. (Unesp - FC - Bauru)

イロト イヨト イヨト イヨト

Valuation

Let (E,⁻) be a Tarski space. A restrict valuation is a function
 ⟨.⟩: Var(TK) → P(E) that interprets each variable of TK in an element of P(E).

Image: A match a ma

Tarski spaces as models for **TK**

Valuation

- Let (E,⁻) be a Tarski space. A restrict valuation is a function
 ⟨.⟩: Var(TK) → P(E) that interprets each variable of TK in an element of P(E).
- A valuation is a function [.]: For(TK) → P(E) that extends natural and uniquely ⟨.⟩ as follows:
 (i) [p] = ⟨p⟩
 (ii) [¬φ] = E [φ]
 (iii) [Φφ] = [φ]
 (iv) [φ ∧ ψ] = [φ] ∩ [ψ]
 (v) [φ ∨ ψ] = [φ] ∪ [ψ].

• • • • • • • • • • • •

Tarski spaces as models for TK

Valuation

- Let (E,⁻) be a Tarski space. A restrict valuation is a function
 ⟨.⟩: Var(TK) → P(E) that interprets each variable of TK in an element of P(E).
- A valuation is a function [.] : $For(\mathbf{TK}) \rightarrow \mathcal{P}(E)$ that extends natural and uniquely $\langle . \rangle$ as follows: (i) $[p] = \langle p \rangle$ (ii) $[\neg \varphi] = E - [\varphi]$ (iii) $[\oint \varphi] = [\varphi]$ (iv) $[\varphi \land \psi] = [\varphi] \cap [\psi]$ (v) $[\varphi \lor \psi] = [\varphi] \cup [\psi].$ So: (vi) $[\top] = E$, where \top is any tautology (vii) $[\bot] = \emptyset$, where \bot is any contradiction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tarski spaces as models for **TK**

Tarski models

FEITOSA, H. A. (Unesp - FC - Bauru)

Let (E,⁻) be a Tarski space. A model for a set Γ ⊆ For(TK) is a valuation [.]: For(TK) → P(E), such that [γ] = E, for each formula γ ∈ Γ.

- Let (E,⁻) be a Tarski space. A model for a set Γ ⊆ For(TK) is a valuation [.]: For(TK) → P(E), such that [γ] = E, for each formula γ ∈ Γ.
- Notation: $\langle (E, -), [.] \rangle \vDash \Gamma$.

- Let (E,⁻) be a Tarski space. A model for a set Γ ⊆ For(TK) is a valuation [.]: For(TK) → P(E), such that [γ] = E, for each formula γ ∈ Γ.
- Notation: $\langle (E, -), [.] \rangle \vDash \Gamma$.
- In particular, if φ ∈ For(TK), then a valuation [.]: For(TK) → P(E) is a model for φ when [φ] = E. In this case we write ⟨(E,⁻), [.]⟩ ⊨ φ.

- Let (E,⁻) be a Tarski space. A model for a set Γ ⊆ For(TK) is a valuation [.]: For(TK) → P(E), such that [γ] = E, for each formula γ ∈ Γ.
- Notation: $\langle (E, -), [.] \rangle \vDash \Gamma$.
- In particular, if φ ∈ For(TK), then a valuation [.]: For(TK) → P(E) is a model for φ when [φ] = E. In this case we write ⟨(E,⁻), [.]⟩ ⊨ φ.
- A formula φ is valid, what is denoted by ⊨ φ, if for every space (E,⁻) and every valuation [.] : For(TK) → P(E), we have that ((E,⁻), [.]) ⊨ φ.

< ロト < 同ト < ヨト < ヨト

- Let (E,⁻) be a Tarski space. A model for a set Γ ⊆ For(TK) is a valuation [.]: For(TK) → P(E), such that [γ] = E, for each formula γ ∈ Γ.
- Notation: $\langle (E, -), [.] \rangle \vDash \Gamma$.
- In particular, if φ ∈ For(TK), then a valuation [.]: For(TK) → P(E) is a model for φ when [φ] = E. In this case we write ⟨(E,⁻), [.]⟩ ⊨ φ.
- A formula φ is **valid**, what is denoted by $\vDash \varphi$, if for every space $(E, \overline{})$ and every valuation $[.] : For(\mathbf{TK}) \to \mathcal{P}(E)$, we have that $\langle (E, \overline{}), [.] \rangle \vDash \varphi$.
- If Γ ∪ {ψ} ⊆ For(TK), then Γ logically implies ψ, what is denoted by Γ ⊨ ψ, if every model of Γ is a model of ψ.

Adequacy

FEITOSA, H. A. (Unesp - FC - Bauru)

UFBA - 2019 21/31

Adequacy

•
$$[\varphi \to \psi] = E \Leftrightarrow [\varphi] \subseteq [\psi].$$
Adequacy

•
$$[\varphi \to \psi] = E \Leftrightarrow [\varphi] \subseteq [\psi].$$

• (Adequacy) If $\Gamma \cup \{\varphi\} \subseteq For(\mathsf{TK})$, then $\Gamma \vdash \varphi \Leftrightarrow \Gamma \vDash \varphi$.

FEITOSA, H. A. (Unesp - FC - Bauru)

 UFBA - 2019 21/31

Table of Contents

- Almost topological spaces
- 2 Tarski consequence operator
- 3 TK-algebras
- 4 The logic of deductibility
 - 5 Tarski spaces as model for TK
- 6 TK plus the modal axiom B
 - TK plus the modal axiom 5

8 Bibliography

FEITOSA, H. A. (Unesp - FC - Bauru)

Image: A match a ma

The axiom ${\boldsymbol{\mathsf{B}}}$

• The modal axiom **B**: $\varphi \to \Box \blacklozenge \varphi$.

FEITOSA, H. A. (Unesp - FC - Bauru)

- The modal axiom **B**: $\varphi \to \Box \blacklozenge \varphi$.
- This version of axiom **B** is equivalent to: $\blacklozenge \Box \varphi \rightarrow \varphi$.

- The modal axiom **B**: $\varphi \to \Box \blacklozenge \varphi$.
- This version of axiom **B** is equivalent to: $\blacklozenge \Box \varphi \rightarrow \varphi$.
- The models of TK + B are almost topological spaces (E, Ω) with a constraint:

- The modal axiom **B**: $\varphi \to \Box \blacklozenge \varphi$.
- This version of axiom **B** is equivalent to: $\blacklozenge \Box \varphi \rightarrow \varphi$.
- The models of TK + B are almost topological spaces (E, Ω) with a constraint:
- To validate φ → ⊟♦φ we need that for any φ ∈ For(TK),
 v(φ → ⊟♦φ) = E.

$\mathsf{T}\mathsf{K}$ plus the modal axiom B

Consequences

FEITOSA, H. A. (Unesp - FC - Bauru)

Image: A match a ma

• So:
$$v(\varphi \to \Box \blacklozenge \varphi) = E \Leftrightarrow v(\neg \varphi \lor \Box \blacklozenge \varphi) = E \Leftrightarrow$$

 $v(\neg \varphi) \cup v(\Box \blacklozenge \varphi) = E \Leftrightarrow v(\varphi)^c \cup v(\grave{\diamondsuit}\varphi) = E \Leftrightarrow v(\varphi)^c \cup \overset{\circ}{v(\varphi)} = E.$

(日)

- So: $v(\varphi \to \Box \blacklozenge \varphi) = E \Leftrightarrow v(\neg \varphi \lor \Box \blacklozenge \varphi) = E \Leftrightarrow$ $v(\neg \varphi) \cup v(\Box \blacklozenge \varphi) = E \Leftrightarrow v(\varphi)^c \cup v(\diamondsuit \varphi) = E \Leftrightarrow v(\varphi)^c \cup \overrightarrow{v(\varphi)} = E.$
- For each $\varphi \in For(\mathsf{TK}), v(\varphi) \subseteq \overline{v(\varphi)}.$

- So: $v(\varphi \to \Box \blacklozenge \varphi) = E \Leftrightarrow v(\neg \varphi \lor \Box \blacklozenge \varphi) = E \Leftrightarrow$ $v(\neg \varphi) \cup v(\Box \blacklozenge \varphi) = E \Leftrightarrow v(\varphi)^c \cup v(\grave{}\varphi) = E \Leftrightarrow v(\varphi)^c \cup \overline{v(\varphi)} = E.$
- For each $\varphi \in For(\mathsf{TK}), \ v(\varphi) \subseteq \overline{v(\varphi)}.$
- By the equivalence $\varphi \to \Box \blacklozenge \varphi \iff \blacklozenge \Box \varphi \to \varphi$:

- So: $v(\varphi \to \Box \blacklozenge \varphi) = E \Leftrightarrow v(\neg \varphi \lor \Box \blacklozenge \varphi) = E \Leftrightarrow$ $v(\neg \varphi) \cup v(\Box \blacklozenge \varphi) = E \Leftrightarrow v(\varphi)^c \cup v(\diamondsuit \varphi) = E \Leftrightarrow v(\varphi)^c \cup \overrightarrow{v(\varphi)} = E.$
- For each $\varphi \in For(\mathsf{TK}), v(\varphi) \subseteq \overline{v(\varphi)}.$
- By the equivalence $\varphi \to \Box \blacklozenge \varphi \iff \blacklozenge \Box \varphi \to \varphi$:
- $v(\blacklozenge \Box \varphi \to \varphi) = v(\neg \blacklozenge \Box \varphi \lor \varphi) = v(\neg \blacklozenge \Box \varphi) \cup v(\varphi)$ = $v(\varphi)^c \cup v(\varphi) = E.$

< (17) > < (17) > <

•
$$v(\oint \Box \varphi \to \varphi) = v(\neg \phi \Box \varphi \lor \varphi) = v(\neg \phi \Box \varphi) \cup v(\varphi)$$

= $v(\varphi)^c \cup v(\varphi) = E.$

• Thus,
$$v(\varphi)^c \subseteq v(\varphi)^c$$
.

(日)

• So:
$$v(\varphi \to \Box \blacklozenge \varphi) = E \Leftrightarrow v(\neg \varphi \lor \Box \blacklozenge \varphi) = E \Leftrightarrow v(\neg \varphi) \cup v(\Box \blacklozenge \varphi) = E \Leftrightarrow v(\varphi)^c \cup v(\diamondsuit \varphi) = E \Leftrightarrow v(\varphi)^c \cup \overline{v(\varphi)} = E.$$

• For each $\varphi \in For(\mathsf{TK}), v(\varphi) \subseteq \overline{v(\varphi)}.$
• By the equivalence $\varphi \to \Box \blacklozenge \varphi \Leftrightarrow \blacklozenge \Box \varphi \to \varphi:$
• $v(\blacklozenge \Box \varphi \to \varphi) = v(\neg \blacklozenge \Box \varphi \lor \varphi) = v(\neg \blacklozenge \Box \varphi) \cup v(\varphi)$
= $v(\varphi)^c \cup v(\varphi) = E.$
• Thus, $v(\varphi)^c \subseteq \overline{v(\varphi)}^c.$

• For every $\varphi \in For(\mathsf{TK})$, we have $v(\varphi) \subseteq v(\varphi)$.

Constraint

FEITOSA, H. A. (Unesp - FC - Bauru)

Image: A math a math

Constraint

An almost topological space (E, Ω) is a model for TK + B, if for every A ⊆ E it holds:
(i) A ⊆ Å;
(ii) Å ⊆ A.

Constraint

- An almost topological space (E, Ω) is a model for TK + B, if for every A ⊆ E it holds:
 (i) A ⊆ Å;
 (ii) Å ⊆ A.
 If (E, Ω) is a model for TK + B, and we consider
- $f,g:(\mathcal{P}(E),\subseteq) \to (\mathcal{P}(E),\subseteq)$ defined by $f(A) = \overline{A}$ and $g(A) = \mathring{A}$, then the pair [f,g] determines an adjunction (a Galois pair).

Table of Contents

- Almost topological spaces
- 2 Tarski consequence operator
- 3 TK-algebras
- 4 The logic of deductibility
- 5 Tarski spaces as model for TK
- 6 TK plus the modal axiom B
- **TK** plus the modal axiom 5

8 Bibliography

FEITOSA, H. A. (Unesp - FC - Bauru)

(日)

• The modal axiom 5: $\phi \psi \rightarrow \Box \phi \psi$.

FEITOSA, H. A. (Unesp - FC - Bauru)

• • = • •

Image: Image:

- The modal axiom 5: $\phi \psi \rightarrow \Box \phi \psi$.
- This version of axiom **5** is equivalent to: $\blacklozenge \Box \psi \rightarrow \Box \psi$.

► < ∃ ►</p>

- The modal axiom 5: $\phi \psi \rightarrow \Box \phi \psi$.
- This version of axiom **5** is equivalent to: $\blacklozenge \Box \psi \rightarrow \Box \psi$.

• 1.
$$\forall \psi \rightarrow \Box \diamond \psi$$

2. $\diamond \neg \psi \rightarrow \Box \diamond \neg \psi$
3. $\neg \Box \diamond \neg \psi \rightarrow \neg \diamond \neg \psi$
4. $\neg \neg \diamond \neg \neg \Box \neg \neg \psi \rightarrow \Box \psi$
5. $\diamond \Box \psi \rightarrow \Box \psi$. (5')

.

- The modal axiom 5: $\psi \to \Box \phi \psi$.
- This version of axiom **5** is equivalent to: $\blacklozenge \Box \psi \rightarrow \Box \psi$.

• 1.
$$\forall \psi \rightarrow \boxminus \forall \psi$$

2. $\forall \neg \psi \rightarrow \boxminus \forall \neg \psi$
3. $\neg \boxminus \forall \neg \psi \rightarrow \neg \forall \neg \psi$
4. $\neg \neg \forall \neg \neg \boxminus \neg \neg \psi \rightarrow \boxminus \psi$
5. $\forall \boxminus \psi \rightarrow \boxminus \psi$. (5')

• **5** \Rightarrow **B**, because $\psi \rightarrow \phi \psi$ and $\Box \psi \rightarrow \psi$.

.

Image: Image:

► < ∃ ►</p>

• We must to interpret the axiom 5 in an almost topological space by:

$$\overline{A} \subseteq \overset{\circ}{\overline{A}}$$
.

• We must to interpret the axiom 5 in an almost topological space by:

$$\overline{A}\subseteq \overset{\circ}{\overline{A}}.$$

• Considering that the interior of each set is included in the set, then $\overline{A} = \mathring{\overline{A}}$.

• We must to interpret the axiom 5 in an almost topological space by:

$$\overline{A}\subseteq \overset{\circ}{\overline{A}}.$$

- Considering that the interior of each set is included in the set, then $\overline{A} = \mathring{\overline{A}}$.
- In an almost topological space (E, Ω) such that for every A ⊆ E, we have A
 = A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

• We must to interpret the axiom 5 in an almost topological space by:

$$\overline{A}\subseteq \overset{\circ}{\overline{A}}.$$

- Considering that the interior of each set is included in the set, then $\overline{A} = \mathring{\overline{A}}$.
- In an almost topological space (E, Ω) such that for every A ⊆ E, we have A
 = A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A
- In an almost topological space (E, Ω) such that for every A ⊆ E, we have A
 = A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

TK plus the modal axiom 5

Space of clopens

FEITOSA, H. A. (Unesp - FC - Bauru)

• • • • • • • • • • • •

TK plus the modal axiom 5

Space of clopens

 These conditions say that every closed set is open and every open set is closed, but it say not that every subset of E is open and closed. It can be some set non open and non closed, as in the case that the only open and closed are Ø and E.

Space of clopens

- These conditions say that every closed set is open and every open set is closed, but it say not that every subset of E is open and closed. It can be some set non open and non closed, as in the case that the only open and closed are Ø and E.
- The almost topological spaces such that for any $A \subseteq E$, $\overline{A} = \overline{A}$, are adequate models for **TK** + **5**.

Space of clopens

- These conditions say that every closed set is open and every open set is closed, but it say not that every subset of E is open and closed. It can be some set non open and non closed, as in the case that the only open and closed are Ø and E.
- The almost topological spaces such that for any $A \subseteq E$, $\overline{A} = \overline{A}$, are adequate models for **TK** + **5**.
- If (E, Ω) is an almost topological space in which for every A ⊆ E, we have A
 = A

 A = A

< < >> < <</p>

Space of clopens

- These conditions say that every closed set is open and every open set is closed, but it say not that every subset of E is open and closed. It can be some set non open and non closed, as in the case that the only open and closed are Ø and E.
- The almost topological spaces such that for any $A \subseteq E$, $\overline{A} = \overline{A}$, are adequate models for **TK** + **5**.
- If (E, Ω) is an almost topological space in which for every A ⊆ E, we have A
 = A

 A = A

 A = A

 A = A

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B

 A = B
 <
- The literature on modal logics points that the modal system S_5 has like adequate models exactly the class of topological spaces in which every open set is closed (Kremer, 2009), then S_5 and $\mathbf{TK} + \mathbf{5}$ has the same valid formulas and, hence, they are deductively coincident.

Table of Contents

- Almost topological spaces
- 2 Tarski consequence operator
- 3 TK-algebras
- 4 The logic of deductibility
- 5 Tarski spaces as model for TK
- 6 TK plus the modal axiom B
 - 7 TK plus the modal axiom 5

8 Bibliography

Bibliography

CHELLAS, B. **Modal Logic:** an introduction. Cambridge: Cambridge University Press, 1980.

FEITOSA, H. A.; NASCIMENTO, M. C. Logic of deduction: models of pre-order and maximal theories. South American Journal of Logic, v. 1, p. 283-297, 2015.

FEITOSA, H. A.; NASCIMENTO, M. C.; GRÁCIO, M. C. C. Logic TK: algebraic notions from Tarki's consequence operator. Principia, v. 14, p. 47-70, 2010.

KREMER P. Dynamic topological S5. Annals of Pure and Applied Logic, v. 160, p. 96-116, 2009.

NASCIMENTO, M. C.; FEITOSA, H. A. As álgebras dos operadores de consequência. Revista de Matemática e Estatística, v. 23, n. 1, p. 19-30, 2005.

MORTARI, C. A.; FEITOSA, H. A. A neighbourhood semantic for the Logic TK. **Principia**, v. 15, p. 287-302, 2011.

RASIOWA, H. An algebraic approach to non-classical logics.

Amsterdam: North-Holland, 1974.

FEITOSA, H. A. (Unesp - FC - Bauru)