PI theory for Leibniz algebras

Chia Zargeh

Joint work with Manuela da Silva Souza,

04-08/11, 2019

Introduction

Leibniz algebras are non-antisymmetric generalization of Lie algebras introduced by Bloh in 1965 and rediscovered by Loday in 1993.

Definition

A Leibniz algebra is a vector space L over a field \mathbb{K} with bilinear product (-,-) which satisfies the Leibniz identity

$$(x,(y,z)) = ((x,y),z) - ((x,z),y).$$
(1)

Any Lie algebra is a Leibniz algebra. A Leibniz algebra satisfying the condition $(a, a) = a^2 = 0$ for all $a \in L$ is a Lie algebra and the Leibniz identity becomes the Jacobi identity.

Definition

The Leibniz algebra is called free Leibniz algebra with a set of free generators X and denoted by Leib(X) if, for any Leibniz algebra L, an arbitrary map $X \to L$ can be extended to an algebra homomorphism $Leib(X) \to L$.

Introduction

Definition

A Leibniz algebra L is said to be nilpotent, if there exists $n \in \mathbb{N}$ such that $L^n = 0$. The minimal number n is said to be the index of nilpotency of L.

Definition

An n-dimensional Leibniz algebra L is called null-filiform if

$$dimL^{i} = n + 1 - i, 1 \le i \le n + 1.$$

Obviously null-filiform Leibniz algebras have maximal index of nilpotency.

An arbitrary n-dimensional null-filiform Leibniz algebra is isomorphic to the algebra

$$NF_n: (e_i, e_1) = e_{i+1}, \ 1 \le i \le n-1,$$

where $\{e_1, \ldots, e_n\}$ is a basis for *L*. (Ayupov and Omirov, 2001)

Remark

Every Leibniz polynomial can be written as a linear combination of left-normed monomials.

PI Algebra

We fix a field K of characteristic zero.

Definition

Let A be an algebra. A *polynomial identity* (PI) for A is a non-zero polynomial $f(x_1, \ldots, x_n)$ in a finite number of non-commuting variables X_1, \ldots, X_n with coefficients in K such that

$$f(a_1,\ldots,a_n)=0,$$

for all $a_1, \ldots, a_n \in A$.

We shall only consider homogeneous PIs (Recall that a polynomial is homogeneous if it is a linear combination of monomials all having the same degree in each variable).

Example

- ► An algebra for which there is a PI is called a PI-algebra.
- ► Any commutative algebra A is a PI-algebra since f(x, y) = xy yx is PI for A.
- A degree 5 polynomial identity: The polynomial

$$F(X, Y, Z) = [[X, Y]^2, Z]$$

= XYXYZ - XY²XZ - YX²YZ + YXYXZ
- ZXYXY + ZXY²X + ZYX²Y - ZYXYX

is a PI for the algebra of 2×2 matrices with entries in K.

1

T-ideals

Let A be a PI-algebra. The set Id(A) of polynomial identities for A forms a two-sided ideal of the free algebra $K\langle X_1, X_2, \ldots \rangle$.

Definition

A T-ideal is a two-sided ideal of $K\langle X_1, X_2, \ldots \rangle$ that is preserved under all substitution of variables, equivalently, under all algebra endomorphisms of $K\langle X_1, X_2, \ldots \rangle$. The ideal Id(A) of polynomial identities is a T-ideal.

Problem I: Determine the ideal Id(A) for a given PI-algebra A? This is a difficult problem, solved only for a handful of algebras such as commutative algebras.

Problem II: Is Id(A) generated by a finite number of polynomial identitiesas a T-ideal?

In 1987 Kemer gave a positive answer to the Specht problem for any Pl-algebra (whether it is finitely generated or not).

We now turn to a class of algebras with extra structure. In fact, through endowing algebras group grading structures their properties can sometimes be described based on the properties of the structure-induced subspaces of them.

Definition

A Leibniz algebra *L* is a graded algebra, by means of the abelian group *G*, if *L* decomposes as the direct sum of vector subspaces $L = \bigoplus_{g \in G} L_g$.

Example

(Omirov, 2006) Consider the complex (non-Lie) Leibniz algebra L with the basis $\{e, h, f, p, q\}$ defined by the following multiplications

$$(e, h) = 2e, (h, f) = 2f, (e, f) = h,$$

 $(h, e) = -2e, (f, h) = -2f, (f, e) = -h$
 $(p, h) = p, (p, f) = q,$
 $(q, h) = -q, (q, e) = -p,$

where omitted products are zero.

The Leibniz algebra L can be \mathbb{Z} -graded as $L = \bigoplus_{z \in \mathbb{Z}} L_z$ such that $L_0 = \langle h \rangle$, $L_1 = \langle p \rangle$, $L_{-1} = \langle q \rangle$, $L_2 = \langle e \rangle$, $L_{-2} = \langle f \rangle$ and $L_z = 0$ for any $z \notin \{0, \pm 1, \pm 2\}$.

Let $L = NF_n$ be a null-filiform Leibniz algebra. There exists the following theorem regarding gradings of NF_n .

Lemma

(Calderon et al. 2019) Let L be a null-filiform Leibniz algebra of dimension n. Then, up to equivalence, all cyclic toral gradings are the following:

- (1) The trivial grading gives by $L = \langle e_1, \ldots, e_n \rangle$;
- (2) The \mathbb{Z} -grading gives by $L = \langle e_1 \rangle_1 \oplus \langle e_2 \rangle_2 \oplus \cdots \oplus \langle e_n \rangle_n$;
- (3) For any $2 \le i \le n-1$, the \mathbb{Z}_i -grading given by

$$L=L_{\bar{0}}\oplus L_{\bar{1}}\oplus\cdots\oplus L_{\overline{i-1}}.$$

The homogeneous subspaces in the previous lemma are described in following sense,

$$L_{\bar{0}} = \langle e_i, e_{2i}, \dots, e_{mi} \rangle$$

$$L_{\bar{1}} = \langle e_1, e_{i+1}, \dots, e_{mi+1} \rangle$$

$$\dots$$

$$L_{\bar{p}} = \langle e_p, e_{i+p}, \dots, e_{mi+p} \rangle$$

$$L_{\overline{i-1}} = \langle e_{i-1}, e_{2i-1}, \dots, e_{(m-1)i+i-1} \rangle.$$

being n = mi + p with $0 \le p \le i - 1$ and $p \in \mathbb{N}$.

Let consider the case of \mathbb{Z}_2 -grading of null-filiform Leibniz algebra NF_n with X as the set of free generators. Assume that $X = Y \cup Z$ is a disjoint union of the sets $Y = \{y_1, y_2...\}$ and $Z = \{z_1, z_2, ...\}$. According to the main lemma about gradings, we have the \mathbb{Z}_2 -gradings as

$$L := \langle e_2, e_4, \ldots, e_n \rangle_0 \oplus \langle e_1, e_3, \ldots, e_{n-1} \rangle_1,$$

or

$$L:=\langle e_2,e_4,\ldots,e_{n-1}\rangle_0\oplus\langle e_1,e_3,\ldots,e_n\rangle_1,$$

where NF_n is of dimension even or odd, respectively.

 $\mathbb{Z}_2, \, \mathbb{Z}_i$ and $\mathbb{Z}\text{-graded}$ identities

The \mathbb{Z}_2 -graded identities

The following polynomials are graded identities for \mathbb{Z}_2 -graded null-filiform Leibniz algebra NF_n :

- 1. y_1y_2 ,
- 2. *zy*,
- 3. $x_1(x_2x_3)$,

where x_1 and x_2 are any variables and the fourth polynomial identity is only valid for NF_3 .

 $\mathbb{Z}_2,\,\mathbb{Z}_i$ and $\mathbb{Z}\text{-graded}$ identities

The \mathbb{Z}_i -graded identities

We consider the following graded identities for \mathbb{Z}_i -gradings. The following polynomials are \mathbb{Z}_i -graded identities for NF_n .

- 1. mn, $n \notin L_{\overline{1}}$
- 2. $w_3(w_1w_2), w_i \in L_{\bar{1}}$

 $\mathbb{Z}_2, \, \mathbb{Z}_i$ and $\mathbb{Z}\text{-graded}$ identities

The $\mathbb{Z}\text{-}\mathsf{graded}$ identities

Here we describe generators of the ideal of graded identities for \mathbb{Z} -graded null-filiform Leibniz algebras. Let $X^i = \{x_1^i, x_2^i, ...\}$ $(i \in \mathbb{Z})$ be countable infinite disjoint sets, and put $X = \bigcup_{i \in \mathbb{Z}} X^i$. The elements of X^i are of degree *i*. Let consider Leibniz polynomials *m* and *n* which are of degree *i* and *j* and so (m, n) is of degree i + j. A polynomial $f(x_{j_1}^{i_1}, ..., x_{j_k}^{i_k})$ is a graded identity of the \mathbb{Z} -graded null-filiform Leibniz algebra $NF_n = \bigoplus_{r \in \mathbb{Z}} L_r$ if $f(a_1, ..., a_k) = 0$ in *L* for every choice $a_t \in L_{i_t}$. The following polynomials are graded identities for \mathbb{Z} -graded NF_n .

1.
$$x^{i}$$
, $i \notin \{1, ..., n\}$
2. $x_{1}^{i} x_{2}^{j}$, $1 \le i \le n$, $2 \le j \le n$
3. $((x_{i_{1}}^{a_{1}} x_{i_{2}}) x_{i_{3}}) - ((x_{i_{1}}^{a_{1}} x_{i_{3}}) x_{i_{2}})$ for $a_{1} \ge n$

Question

Do the preceding identities of NF_n generate the ideal of graded identities of null-filiform Leibniz algebras NF_n ?

1

 $\mathbb{Z}_2,\,\mathbb{Z}_i$ and $\mathbb{Z}\text{-}\mathsf{graded}$ identities

Thank you for your attention.