Ângulo de Grassmann, Produtos de Multivetores, e Teoremas de Pitágoras Generalizados

André L. G. Mandolesi

Instituto de Matemática e Estatística, UFBA.
E-mail: andre.mandolesi@ufba.br

04/11/2019

Principal Angles between Subspaces

$X=$ real or complex n-dimensional vector space, with inner product $\langle\cdot, \cdot\rangle$.

Definition

Let $V, W \subset X$ be subspaces, $p=\operatorname{dim} V, q=\operatorname{dim} W, m=\min \{p, q\}$. A singular value decomposition gives orthonormal principal bases

$$
\left(e_{1}, \ldots, e_{p}\right) \text { of } V, \quad\left(f_{1}, \ldots, f_{q}\right) \text { of } W,
$$

in which the orthogonal projection $P: V \rightarrow W$ is given by a $q \times p$ diagonal matrix, with the diagonal formed by the $\cos \theta_{i}$'s of their principal angles

$$
0 \leq \theta_{1} \leq \ldots \leq \theta_{m} \leq \frac{\pi}{2}
$$

Proposition

Orthonormal bases $\left(e_{1}, \ldots, e_{p}\right)$ of V and $\left(f_{1}, \ldots, f_{q}\right)$ of W, and angles $0 \leq \theta_{1} \leq \ldots \leq \theta_{m} \leq \frac{\pi}{2}$, constitute principal bases and angles if

$$
\left\langle e_{i}, f_{j}\right\rangle=\delta_{i j} \cos \theta_{i} .
$$

Geometric interpretation:

- unit sphere of V projects to an ellipsoid in W;
- the e_{i} 's project onto its semi-axes;
- the f_{i} 's point along the semi-axes;
- the semi-axes have lengths $\cos \theta_{i}$.

In the complex case, for each i there are 2 semi-axes of equal lengths, corresponding to projections of e_{i} and ie_{i}.

Example (A)

In \mathbb{R}^{4},

$$
\begin{array}{ll}
e_{1}=(1,0,1,0) / \sqrt{2} & f_{1}=(1,0,0,0) \\
e_{2}=(0,1,0,1) / \sqrt{2} & f_{2}=(0,1,0,0)
\end{array}
$$

are principal vectors for $V=\operatorname{span}\left(e_{1}, e_{2}\right)$ and $W=\operatorname{span}\left(f_{1}, f_{2}\right)$, with principal angles $\theta_{1}=\theta_{2}=45^{\circ}$.

Example (B)

In \mathbb{C}^{4},

$$
\begin{array}{ll}
e_{1}=(\mathrm{i}, \sqrt{3}, 0,0) / 2 & f_{1}=(\mathrm{i}, 0,0,0) \\
e_{2}=(0,0,1,1) / \sqrt{2} & f_{2}=(0,0,1+\mathrm{i}, 1-\mathrm{i}) / 2
\end{array}
$$

are principal vectors for $V=\operatorname{span}_{C}\left(e_{1}, e_{2}\right)$ and $W=\operatorname{span}_{C}\left(f_{1}, f_{2}\right)$, with principal angles $\theta_{1}=60^{\circ}$ and $\theta_{2}=45^{\circ}$.

Proposition

Given pairs of subspaces (V, W) and $\left(V^{\prime}, W^{\prime}\right)$, with $\operatorname{dim} V^{\prime}=\operatorname{dim} V$ and $\operatorname{dim} W^{\prime}=\operatorname{dim} W$, there is an orthogonal/unitary transformation taking V to V^{\prime} and W to $W^{\prime} \Leftrightarrow$ both pairs have the same principal angles.

We need all principal angles to describe the relative position of subspaces. But it is often convenient if we can combine them into a single number describing the property of interest.

Grassmann angle

Grassmann algebra

A (p-)blade is a decomposable multivector $\nu=v_{1} \wedge \ldots \wedge v_{p} \in \Lambda^{p} X$.

If $\nu \neq 0$ the vectors are L.I., so ν determines the p-dimensional subspace $V=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)$, and $\Lambda^{p} V=\operatorname{span}(\nu)$ is a line in $\Lambda^{p} X$.
Inner product of p-blades $\nu=v_{1} \wedge \ldots \wedge v_{p}$ and $\omega=w_{1} \wedge \ldots \wedge w_{p}$ is

$$
\langle\nu, \omega\rangle=\operatorname{det}\left\langle v_{i}, w_{j}\right\rangle=\left|\begin{array}{ccc}
\left\langle v_{1}, w_{1}\right\rangle & \cdots & \left\langle v_{1}, w_{p}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle v_{p}, w_{1}\right\rangle & \cdots & \left\langle v_{p}, w_{p}\right\rangle
\end{array}\right| .
$$

Real case: $\|\nu\|=\sqrt{\langle\nu, \nu\rangle}=p$-dim volume of parallelepiped $v_{1} \wedge \ldots \wedge v_{p}$. Complex case: $\|\nu\|^{2}=2 p$-dim volume of $v_{1} \wedge_{\mathrm{R}} \mathrm{i} v_{1} \wedge_{\mathrm{R}} \ldots \wedge_{\mathrm{R}} v_{p} \wedge_{\mathrm{R}} \mathrm{i} v_{p}$.

Grassmann angle

Definition

Let $V, W \subset X$ be subspaces, with principal angles $\theta_{1}, \ldots, \theta_{m}$, $P=\operatorname{Proj}_{W}^{V}$, and $\mathbf{P}=$ matrix representing P in orthonormal bases.

The Grassmann angle $\Theta_{V, W} \in\left[0, \frac{\pi}{2}\right]$ of V with W can be defined by:

- $\cos ^{2} \Theta_{V, W}=\operatorname{det}\left(\overline{\mathbf{P}}^{T} \mathbf{P}\right)$.

Grassmann angle

Definition

Let $V, W \subset X$ be subspaces, with principal angles $\theta_{1}, \ldots, \theta_{m}$, $P=\operatorname{Proj}_{W}^{V}$, and $\mathbf{P}=$ matrix representing P in orthonormal bases.

The Grassmann angle $\Theta_{V, W} \in\left[0, \frac{\pi}{2}\right]$ of V with W can be defined by:

- $\cos ^{2} \Theta_{V, W}=\operatorname{det}\left(\overline{\mathbf{P}}^{T} \mathbf{P}\right)$.
- $\cos \Theta_{V, W}= \begin{cases}\cos \theta_{1} \cdot \ldots \cdot \cos \theta_{m} & \text { if } \operatorname{dim} V \leq \operatorname{dim} W, \\ 0 & \text { if } \operatorname{dim} V>\operatorname{dim} W .\end{cases}$

Example (A')

In Example A, all vectors in V make a 45° angle with W, but $\Theta_{V, W}=60^{\circ}$.

Definition (cont.)

- Real case: $\cos \Theta_{V, w}=\frac{\operatorname{vol} P(S)}{\operatorname{vol} S}$, for any measurable set $S \subset V$.

Complex: $\cos ^{2} \Theta_{V, w}=\frac{\operatorname{vol} P(S)}{\operatorname{vol} S}$.

Definition (cont.)

- Real case: $\cos \Theta_{V, W}=\frac{\operatorname{vol} P(S)}{\operatorname{vol} S}$, for any measurable set $S \subset V$.

Complex: $\cos ^{2} \Theta_{V, W}=\frac{\operatorname{vol} P(S)}{\operatorname{vol} S}$.

- $\cos \Theta_{V, W}=\frac{\|P \nu\|}{\|\nu\|}$, for any $\nu \in \Lambda^{p} V, p=\operatorname{dim} V$.

Definition (cont.)

- $\Theta_{V, W}=$ angle in $\Lambda^{p} X$ between the line $\Lambda^{p} V$ and the subspace $\Lambda^{p} W$.

Proposition

- $\Theta_{V, W}=0 \Leftrightarrow V \subset W$.
- $\Theta_{v, w}=\frac{\pi}{2} \Leftrightarrow \exists v \in V, v \neq 0$, such that $v \perp W$.

In general this angle is asymmetric, $\Theta_{V, W} \neq \Theta_{W, V}$.

Proposition

If $\operatorname{dim} V=\operatorname{dim} W$ then $\Theta_{V, W}=\Theta_{W, V}$.

Theorem (Triangle Inequality)

For any subspaces $U, V, W \subset X$,

$$
\Theta_{u, w} \leq \Theta_{u, v}+\Theta_{V, w} .
$$

$\Theta_{V, W}=$ Fubini-Study distance in the Grassmannian of p-dim subspaces, and gives quasi-pseudo-metric in the total Grassmannian of all subspaces.

Complementary Grassmann angle

Definition

Complementary Grassmann angle $\Theta_{V, W}^{\perp} \in\left[0, \frac{\pi}{2}\right]$ of V and W is the Grassmann angle of V with the orthogonal complement of W,

$$
\Theta_{V, w}^{\perp}=\Theta_{V, w^{\perp}}
$$

Reason for special notation: it has symmetry that was absent in $\Theta_{V, w}$.

Proposition

$$
\Theta_{\stackrel{\rightharpoonup}{v}, w}^{\perp}=\Theta_{\stackrel{W}{W}, v}^{\perp}
$$

Example (A')

In Erample A, all vectors in V make a 45° angle with both W and W^{\perp}, so $\Theta_{V, w}=\Theta_{\bar{V}, w}^{\perp}=60^{\circ}$.

In general, $\Theta_{\bar{V}, W}^{\perp} \neq \frac{\pi}{2}-\Theta_{V, W}$, because $\Lambda^{p}\left(W^{\perp}\right) \neq\left(\Lambda^{p} W\right)^{\perp}$.

Proposition

For a line L, the complementary Grassmann angle is the usual complement,

$$
\Theta_{L, W}^{\perp}=\frac{\pi}{2}-\Theta_{L, W}
$$

so that

$$
\cos \Theta_{L, W}^{\perp}=\sin \Theta_{L, W}
$$

But for higher dimensional subspaces the projection on W^{\perp} will be given by a product of sines.

Theorem

If $\theta_{1}, \ldots, \theta_{m}$ are the principal angles of V and W then

$$
\cos \Theta_{V, W}^{\perp}=\sin \theta_{1} \cdot \ldots \cdot \sin \theta_{m}
$$

Blade Products

Inner and Exterior products of blades

Theorem

For any blades $\nu, \omega \in \Lambda^{p} X$, determining $V, W \subset X$,

$$
\langle\nu, \omega\rangle=\sigma_{\nu, \omega}\|\nu\|\|\omega\| \cos \Theta_{V, \omega} .
$$

$\sigma_{\nu, w}$ is a sign ± 1 (real case) or phase factor $e^{\mathrm{i} \varphi}$ (complex case).
It appears because we defined $\Theta_{V, W} \in\left[0, \frac{\pi}{2}\right]$, for non-oriented subspaces.

Theorem

For any blades $\nu, \omega \in \Lambda X$, determining $V, W \subset X$,

$$
\|\nu \wedge \omega\|=\|\nu\|\|\omega\| \cos \Theta_{\stackrel{\rightharpoonup}{\prime}, w}^{\perp}
$$

Interior product of blades

Definition

Interior product $\nu\lrcorner \omega$ of blades $\nu \in \Lambda^{p} X$ and $\omega \in \Lambda^{q} X$, with $p \leq q$, is the unique element of $\Lambda^{q-p} X$ such that

$$
\langle\nu\lrcorner \omega, \tau\rangle=\langle\omega, \nu \wedge \tau\rangle \text { for all } \tau \in \Lambda^{q-p} X
$$

Theorem

Given blades $\nu \in \Lambda^{p} X$ and $\omega \in \Lambda^{q} X$, with $p \leq q$, determining $V, W \subset X$, and a principal basis $\left(f_{1}, \ldots, f_{q}\right)$ of W with respect to V,

$$
\nu\lrcorner \omega=\sigma_{\nu, \omega}\|\nu\|\|\omega\| \cos \Theta_{V, W} \cdot f_{p+1} \wedge \ldots \wedge f_{q}
$$

$\nu\lrcorner \omega$ is a partial inner product, of ν with a subblade of ω where it projects, leaving another subblade of ω orthogonal to ν.

Theorem

Let $\nu \in \Lambda^{p} X, \omega \in \Lambda^{q} X$ be blades, with $p \leq q$, determining $V, W \subset X$, and $P=\operatorname{Proj}_{W}$. Then $\left.\nu\right\lrcorner \omega$ is characterized by:

- $\nu\lrcorner \omega$ is a $(q-p)$-subblade of ω completely orthogonal to ν;
- $(P \nu) \wedge(\nu\lrcorner \omega)$ has the same orientation of ω;
- $\frac{\| \nu\lrcorner \omega \|}{\|P \nu\|}=\frac{\|\omega\|}{1}$.

Trigonometric identities

Theorem

Given a line $L \subset X$ and an orthogonal partition $X=V_{1} \oplus \cdots \oplus V_{k}$,

$$
\sum_{j=1}^{k} \cos ^{2} \Theta_{L, v_{j}}=1
$$

Example (Direction cosines)

If $\theta_{x}, \theta_{y}, \theta_{z}$ are the angles of a line in \mathbb{R}^{3} with the x, y, z axes then

$$
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z}=1
$$

Theorem

For any p-dimensional subspace $V \subset X$,

$$
\sum_{l} \cos ^{2} \Theta_{V, w_{1}}=1
$$

where the W_{l} 's are all p-dimensional coordinate subspaces of an ortonormal basis $\beta=\left\{w_{1}, \ldots, w_{n}\right\}$ of X, i.e.

$$
W_{l}=\operatorname{span}\left(w_{i_{1}}, \ldots, w_{i_{p}}\right),
$$

for any multi-index $I=\left(i_{1}, \ldots, i_{p}\right)$ with $1 \leq i_{1}<\ldots<i_{p} \leq n$.

Example

If $\theta_{x y}, \theta_{x z}, \theta_{y z}$ are the angles of a plane in \mathbb{R}^{3} with the coordinate planes then

$$
\cos ^{2} \theta_{x y}+\cos ^{2} \theta_{x z}+\cos ^{2} \theta_{y z}=1 .
$$

Generalized Pythagorean theorems

As Grassmann angles measure volume contraction, these identities give generalized Pythagorean theorems.

Theorem (Pythagorean theorem for lines)

Given a line $L \subset X$, an orthogonal partition $X=V_{1} \oplus \cdots \oplus V_{k}$, and a measurable set $S \subset L$, with orthogonal projection S_{j} on V_{j},

- Real case: lenght $(S)^{2}=\sum$ lenght $\left(S_{j}\right)^{2}$;
- Complex: $\operatorname{area}(S)=\sum \operatorname{area}\left(S_{j}\right)$.

Complex case: the measure has twice the dimension, but is not squared.

Example

$\operatorname{lenght}(S)^{2}=\operatorname{lenght}\left(S_{x}\right)^{2}+\operatorname{lenght}\left(S_{y}\right)^{2}+\operatorname{lenght}\left(S_{z}\right)^{2}$

Example

Let v_{1}, v_{2} be orthogonal unit complex vectors, and $v=c_{1} v_{1}+c_{2} v_{2}$ for $c_{1}, c_{2} \in \mathbb{C}$ with $\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1$. Any area A in $\mathbb{C} v$ projects to areas $A_{1}=\left|c_{1}\right|^{2} \cdot A$ in $\mathbb{C} v_{1}$ and $A_{2}=\left|c_{2}\right|^{2} \cdot A$ in $\mathbb{C} v_{2}$, with

$$
A=A_{1}+A_{2} .
$$

Theorem (Pythagorean theorem for subspaces)

Given a measurable set S in a subspace $V \subset X$, with $\operatorname{dim} V=p$,

- Real case: $\operatorname{vol}_{p}(S)^{2}=\sum \operatorname{vol}_{p}\left(S_{l}\right)^{2}$,
- Complex: $\operatorname{vol}_{2 p}(S)=\sum \operatorname{vol}_{2 p}\left(S_{l}\right)$, where the S_{I} 's are the orthogonal projections of S on all p-dimensional coordinate subspaces of an orthogonal basis of X.

Example

$$
\operatorname{area}(A)^{2}=\operatorname{area}(B)^{2}+\operatorname{area}(C)^{2}+\operatorname{area}(D)^{2}
$$

Example

$\operatorname{area}(A B C)^{2}=\operatorname{area}(O A B)^{2}+\operatorname{area}(O A C)^{2}+\operatorname{area}(O B C)^{2}$

Obrigado

Complementary

Referências

- A. Mandolesi, Grassmann angles between real or complex subspaces, arXiv:math.GM/1910.00147 (2019).
- A. Mandolesi, Inner, interior and exterior products of simple multivectors and Grassmann angle identities, arXiv:math.GM/1910.07327 (2019).
- A. Mandolesi, Projection factors and generalized real and complex Pythagorean theorems for Lebesgue measures, arXiv:math.GM/1905.08057 (2019).
- E. Hitzer, Angles between subspaces computed in Clifford algebra, AIP Conference Proceedings, vol. 1281, AIP, 2010, pp. 1476-1479.
- S. Jiang, Angles between Euclidean subspaces, Geometriae Dedicata 63 (1996), 113-121.

