Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	000000	00

Ângulo de Grassmann, Produtos de Multivetores, e Teoremas de Pitágoras Generalizados

> André L. G. Mandolesi Instituto de Matemática e Estatística, UFBA. E-mail: andre.mandolesi@ufba.br

> > 04/11/2019

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
0000	000000	0000	0000	0000	000000	00

Principal Angles between Subspaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
0000	0000000	0000	0000	0000	0000000	00

X = real or complex *n*-dimensional vector space, with inner product $\langle \cdot, \cdot \rangle$.

Definition

Let $V, W \subset X$ be subspaces, $p = \dim V$, $q = \dim W$, $m = \min\{p, q\}$. A singular value decomposition gives orthonormal *principal bases*

$$(e_1,\ldots,e_p)$$
 of $V,$ (f_1,\ldots,f_q) of $W,$

in which the orthogonal projection $P: V \to W$ is given by a $q \times p$ diagonal matrix, with the diagonal formed by the $\cos \theta_i$'s of their *principal angles*

$$0 \leq \theta_1 \leq \ldots \leq \theta_m \leq \frac{\pi}{2}.$$

Proposition

Orthonormal bases (e_1, \ldots, e_p) of V and (f_1, \ldots, f_q) of W, and angles $0 \le \theta_1 \le \ldots \le \theta_m \le \frac{\pi}{2}$, constitute principal bases and angles if

$$\langle e_i, f_j \rangle = \delta_{ij} \cos \theta_i.$$

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
0000	0000000	0000	0000	0000	000000	00

Geometric interpretation:

- unit sphere of V projects to an ellipsoid in W;
- the e_i's project onto its semi-axes;
- the f_i's point along the semi-axes;
- the semi-axes have lengths $\cos \theta_i$.

In the complex case, for each *i* there are 2 semi-axes of equal lengths, corresponding to projections of e_i and ie_i .

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	000000	00
Exam	ple (A)					

In \mathbb{R}^4 ,

$$\begin{array}{ll} e_1 = (1,0,1,0)/\sqrt{2} & f_1 = (1,0,0,0) \\ e_2 = (0,1,0,1)/\sqrt{2} & f_2 = (0,1,0,0) \end{array}$$

are principal vectors for $V = \text{span}(e_1, e_2)$ and $W = \text{span}(f_1, f_2)$, with principal angles $\theta_1 = \theta_2 = 45^{\circ}$.

Example (B)

In \mathbb{C}^4 ,

$$\begin{array}{ll} e_1 = (\mathrm{i},\sqrt{3},0,0)/2 & f_1 = (\mathrm{i},0,0,0) \\ e_2 = (0,0,1,1)/\sqrt{2} & f_2 = (0,0,1+\mathrm{i},1-\mathrm{i})/2 \end{array}$$

are principal vectors for $V = \text{span}_{\mathbb{C}}(e_1, e_2)$ and $W = \text{span}_{\mathbb{C}}(f_1, f_2)$, with principal angles $\theta_1 = 60^\circ$ and $\theta_2 = 45^\circ$.

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
0000●	0000000	0000	0000	0000	000000	00

Proposition

Given pairs of subspaces (V, W) and (V', W'), with dim $V' = \dim V$ and dim $W' = \dim W$, there is an orthogonal/unitary transformation taking V to V' and W to $W' \Leftrightarrow$ both pairs have the same principal angles.

We need all principal angles to describe the relative position of subspaces. But it is often convenient if we can combine them into a single number describing the property of interest.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	000000	00

Grassmann angle

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	0000000	00
Grassm	ann algeb	ora				

A (*p*-)blade is a decomposable multivector $\nu = v_1 \land \ldots \land v_p \in \Lambda^p X$.

If $\nu \neq 0$ the vectors are L.I., so ν determines the *p*-dimensional subspace $V = \operatorname{span}(v_1, \ldots, v_p)$, and $\Lambda^p V = \operatorname{span}(\nu)$ is a line in $\Lambda^p X$. Inner product of *p*-blades $\nu = v_1 \wedge \ldots \wedge v_p$ and $\omega = w_1 \wedge \ldots \wedge w_p$ is

$$\langle \nu, \omega \rangle = \det \langle v_i, w_j \rangle = \begin{vmatrix} \langle v_1, w_1 \rangle & \cdots & \langle v_1, w_p \rangle \\ \vdots & \ddots & \vdots \\ \langle v_p, w_1 \rangle & \cdots & \langle v_p, w_p \rangle \end{vmatrix}$$

Real case: $\|\nu\| = \sqrt{\langle \nu, \nu \rangle} = p$ -dim volume of parallelepiped $v_1 \wedge \ldots \wedge v_p$. Complex case: $\|\nu\|^2 = 2p$ -dim volume of $v_1 \wedge_{\mathbb{R}} iv_1 \wedge_{\mathbb{R}} \ldots \wedge_{\mathbb{R}} v_p \wedge_{\mathbb{R}} iv_p$.

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	0000000	00
Grassm	ann angle	9				

Definition

Let $V, W \subset X$ be subspaces, with principal angles $\theta_1, \ldots, \theta_m$, $P = \operatorname{Proj}_W^V$, and $\mathbf{P} = \operatorname{matrix}$ representing P in orthonormal bases.

The Grassmann angle $\Theta_{V,W} \in [0, \frac{\pi}{2}]$ of V with W can be defined by:

•
$$\cos^2 \Theta_{V,W} = \det(\bar{\mathbf{P}}^T \mathbf{P}).$$

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	0000000	00
Grassm	ann angle	9				

Definition

Let $V, W \subset X$ be subspaces, with principal angles $\theta_1, \ldots, \theta_m$, $P = \operatorname{Proj}_W^V$, and $\mathbf{P} =$ matrix representing P in orthonormal bases.

The *Grassmann angle* $\Theta_{V,W} \in [0, \frac{\pi}{2}]$ of *V* with *W* can be defined by:

•
$$\cos^2 \Theta_{V,W} = \det(\bar{\mathbf{P}}^T \mathbf{P}).$$

• $\cos \Theta_{V,W} = \begin{cases} \cos \theta_1 \cdot \ldots \cdot \cos \theta_m & \text{if } \dim V \le \dim W, \\ 0 & \text{if } \dim V > \dim W. \end{cases}$

Example (A')

In \bigcirc Example A, all vectors in V make a 45° angle with W, but $\Theta_{V,W} = 60^{\circ}$.

・ロト・(四)・(日)・(日)・(日)・(日)

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	0000000	00

Definition (cont.)

• $\Theta_{V,W}$ = angle in $\Lambda^{p}X$ between the line $\Lambda^{p}V$ and the subspace $\Lambda^{p}W$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	000000	00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

•
$$\Theta_{V,W} = 0 \iff V \subset W$$
.

• $\Theta_{V,W} = \frac{\pi}{2} \iff \exists v \in V, v \neq 0$, such that $v \perp W$.

In general this angle is asymmetric, $\Theta_{V,W} \neq \Theta_{W,V}$.

Proposition

If dim $V = \dim W$ then $\Theta_{V,W} = \Theta_{W,V}$.

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	000000	00

Theorem (Triangle Inequality)

For any subspaces $U, V, W \subset X$,

$$\Theta_{U,W} \leq \Theta_{U,V} + \Theta_{V,W}.$$

 $\Theta_{V,W}$ = Fubini-Study distance in the Grassmannian of *p*-dim subspaces, and gives quasi-pseudo-metric in the total Grassmannian of all subspaces.

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	000	0000	0000	000000	00

Complementary Grassmann angle

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	0000000	00

Definition

Complementary Grassmann angle $\Theta_{V,W}^{\perp} \in [0, \frac{\pi}{2}]$ of V and W is the Grassmann angle of V with the orthogonal complement of W,

$$\Theta_{V,W}^{\perp} = \Theta_{V,W^{\perp}}.$$

Reason for special notation: it has symmetry that was absent in $\Theta_{V,W}$.

Proposition

$$\Theta_{V,W}^{\perp} = \Theta_{W,V}^{\perp}.$$

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	000000	00

In general, $\Theta_{V,W}^{\perp} \neq \frac{\pi}{2} - \Theta_{V,W}$, because $\Lambda^p(W^{\perp}) \neq (\Lambda^p W)^{\perp}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	0000000	00

Proposition

For a line L, the complementary Grassmann angle is the usual complement,

$$\Theta_{L,W}^{\perp}=\frac{\pi}{2}-\Theta_{L,W},$$

so that

$$\cos \Theta_{L,W}^{\perp} = \sin \Theta_{L,W}.$$

But for higher dimensional subspaces the projection on W^{\perp} will be given by a product of sines.

Theorem

If $\theta_1, \ldots, \theta_m$ are the principal angles of V and W then

$$\cos \Theta_{V,W}^{\perp} = \sin \theta_1 \cdot \ldots \cdot \sin \theta_m.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	000000	00

Blade Products

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	0000000	00
Inner an	d Exterio	r product	ts of blad	des		

Theorem

For any blades $\nu, \omega \in \Lambda^p X$, determining $V, W \subset X$,

 $\langle \nu, \omega \rangle = \sigma_{\nu, \omega} \|\nu\| \|\omega\| \cos \Theta_{V, W}.$

 $\sigma_{v,w}$ is a sign ± 1 (real case) or phase factor $e^{i\varphi}$ (complex case). It appears because we defined $\Theta_{V,W} \in [0, \frac{\pi}{2}]$, for non-oriented subspaces.

Theorem

For any blades $\nu, \omega \in \Lambda X$, determining $V, W \subset X$,

 $\|\nu \wedge \omega\| = \|\nu\| \|\omega\| \cos \Theta_{V,W}^{\perp}.$

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	0000000	00
Interior	product c	of blades				

Definition

Interior product $\nu \lrcorner \omega$ of blades $\nu \in \Lambda^p X$ and $\omega \in \Lambda^q X$, with $p \leq q$, is the unique element of $\Lambda^{q-p} X$ such that

 $\langle \nu \lrcorner \omega, \tau \rangle = \langle \omega, \nu \wedge \tau \rangle$ for all $\tau \in \Lambda^{q-p} X$.

Theorem

Given blades $\nu \in \Lambda^p X$ and $\omega \in \Lambda^q X$, with $p \leq q$, determining $V, W \subset X$, and a principal basis (f_1, \ldots, f_q) of W with respect to V,

 $\nu \lrcorner \omega = \sigma_{\nu,\omega} \|\nu\| \|\omega\| \cos \Theta_{V,W} \cdot f_{p+1} \wedge \ldots \wedge f_q.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\nu \lrcorner \omega$ is a partial inner product, of ν with a subblade of ω where it projects, leaving another subblade of ω orthogonal to ν .

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	0000000	00

Theorem

Let $\nu \in \Lambda^{p}X$, $\omega \in \Lambda^{q}X$ be blades, with $p \leq q$, determining $V, W \subset X$, and $P = \operatorname{Proj}_{W}$. Then $\nu \lrcorner \omega$ is characterized by:

- $\nu \lrcorner \omega$ is a (q p)-subblade of ω completely orthogonal to ν ;
- $(P\nu) \land (\nu \lrcorner \omega)$ has the same orientation of ω ;

$$\bullet \ \frac{\|\nu \lrcorner \omega\|}{\|P\nu\|} = \frac{\|\omega\|}{1}.$$

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	●000	000000	00

Trigonometric identities

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Example (Direction cosines)

If $\theta_x, \theta_y, \theta_z$ are the angles of a line in \mathbb{R}^3 with the x, y, z axes then

$$\cos^{2}\theta_{x} + \cos^{2}\theta_{y} + \cos^{2}\theta_{z} = 1$$

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	000000	00

Theorem

For any p-dimensional subspace $V \subset X$,

$$\sum_{I}\cos^{2}\Theta_{V,W_{I}}=1,$$

where the W_l 's are all p-dimensional coordinate subspaces of an ortonormal basis $\beta = \{w_1, \dots, w_n\}$ of X, i.e.

$$W_I = \operatorname{span}(w_{i_1}, \ldots, w_{i_p}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for any multi-index $I = (i_1, \ldots, i_p)$ with $1 \le i_1 < \ldots < i_p \le n$.

Principal angles	Grassmann angle 0000000	Complementary 0000	Blade products 0000	Irigonometric identities	Pythagorean theorems	Refs. OO
Exam	ple					

If $\theta_{xy}, \theta_{xz}, \theta_{yz}$ are the angles of a plane in \mathbb{R}^3 with the coordinate planes then

$$\cos^2\theta_{xy} + \cos^2\theta_{xz} + \cos^2\theta_{yz} = 1.$$

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	000000	00

Generalized Pythagorean theorems

・ロト ・西ト ・ヨト ・ヨー うへぐ

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	0000000	0000	0000	0000	000000	00

As Grassmann angles measure volume contraction, these identities give generalized Pythagorean theorems.

Theorem (Pythagorean theorem for lines)

Given a line $L \subset X$, an orthogonal partition $X = V_1 \oplus \cdots \oplus V_k$, and a measurable set $S \subset L$, with orthogonal projection S_i on V_j ,

• Real case: $\operatorname{lenght}(S)^2 = \sum \operatorname{lenght}(S_j)^2$;

• Complex:
$$area(S) = \sum area(S_j)$$
.

Complex case: the measure has twice the dimension, but is not squared.

▲□▶▲□▶★∃▶★∃▶ = のへで

Principal angles 00000	Grassmann angle 0000000	Complementary 0000	Blade products 0000	Trigonometric identities 0000	Pythagorean theorems	Refs. OO
Exam	ple					h.

Let v_1, v_2 be orthogonal unit complex vectors, and $v = c_1v_1 + c_2v_2$ for $c_1, c_2 \in \mathbb{C}$ with $|c_1|^2 + |c_2|^2 = 1$. Any area A in $\mathbb{C}v$ projects to areas $A_1 = |c_1|^2 \cdot A$ in $\mathbb{C}v_1$ and $A_2 = |c_2|^2 \cdot A$ in $\mathbb{C}v_2$, with

$$A = A_1 + A_2$$

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	0000000	00

Theorem (Pythagorean theorem for subspaces)

Given a measurable set S in a subspace $V \subset X$, with dim V = p,

• Real case: $\operatorname{vol}_p(S)^2 = \sum \operatorname{vol}_p(S_I)^2$,

• Complex:
$$\operatorname{vol}_{2p}(S) = \sum \operatorname{vol}_{2p}(S_I)$$
,

where the S_I 's are the orthogonal projections of S on all p-dimensional coordinate subspaces of an orthogonal basis of X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	0000000	00

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Principal angles	Grassmann angle	Complementary	Blade products	Trigonometric identities	Pythagorean theorems	Refs.
00000	000000	0000	0000	0000	000000	•0

Obrigado

Principal angles 00000	Grassmann angle 0000000	Complementary 0000	Blade products 0000	Trigonometric identities 0000	Pythagorean theorems	Refs.
Referên	cias					

- A. Mandolesi, *Grassmann angles between real or complex subspaces*, arXiv:math.GM/1910.00147 (2019).
- A. Mandolesi, Inner, interior and exterior products of simple multivectors and Grassmann angle identities, arXiv:math.GM/1910.07327 (2019).
- A. Mandolesi, *Projection factors and generalized real and complex Pythagorean theorems for Lebesgue measures*, arXiv:math.GM/1905.08057 (2019).
- E. Hitzer, *Angles between subspaces computed in Clifford algebra*, AIP Conference Proceedings, vol. 1281, AIP, 2010, pp. 1476-1479.
- S. Jiang, *Angles between Euclidean subspaces*, Geometriae Dedicata **63** (1996), 113-121.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00