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Principal Angles between Subspaces
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X = real or complex n-dimensional vector space, with inner product 〈·, ·〉.

Definition

Let V ,W ⊂ X be subspaces, p = dimV , q = dimW , m = min{p, q}.
A singular value decomposition gives orthonormal principal bases

(e1, . . . , ep) of V , (f1, . . . , fq) of W ,

in which the orthogonal projection P : V →W is given by a q × p
diagonal matrix, with the diagonal formed by the cos θi ’s of their
principal angles

0 ≤ θ1 ≤ . . . ≤ θm ≤
π

2
.

Proposition

Orthonormal bases (e1, . . . , ep) of V and (f1, . . . , fq) of W , and angles
0 ≤ θ1 ≤ . . . ≤ θm ≤ π

2 , constitute principal bases and angles if

〈ei , fj〉 = δij cos θi .
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Geometric interpretation:
unit sphere of V projects to an ellipsoid in W ;

the ei ’s project onto its semi-axes;

the fi ’s point along the semi-axes;

the semi-axes have lengths cos θi .

In the complex case, for each i there are 2 semi-axes of equal lengths,
corresponding to projections of ei and iei .
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Example (A)

In R4,
e1 = (1, 0, 1, 0)/

√
2 f1 = (1, 0, 0, 0)

e2 = (0, 1, 0, 1)/
√

2 f2 = (0, 1, 0, 0)

are principal vectors for V = span(e1, e2) and W = span(f1, f2), with
principal angles θ1 = θ2 = 45◦.

Example (B)

In C4,

e1 = (i,
√

3, 0, 0)/2 f1 = (i, 0, 0, 0)

e2 = (0, 0, 1, 1)/
√

2 f2 = (0, 0, 1 + i, 1− i)/2

are principal vectors for V = spanC(e1, e2) and W = spanC(f1, f2), with
principal angles θ1 = 60◦ and θ2 = 45◦.
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Proposition

Given pairs of subspaces (V ,W ) and (V ′,W ′), with dimV ′ = dimV and
dimW ′ = dimW , there is an orthogonal/unitary transformation taking
V to V ′ and W to W ′ ⇔ both pairs have the same principal angles.

We need all principal angles to describe the relative position of subspaces.
But it is often convenient if we can combine them into a single number
describing the property of interest.
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Grassmann angle
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Grassmann algebra

A (p-)blade is a decomposable multivector ν = v1 ∧ . . . ∧ vp ∈ ΛpX .

If ν 6= 0 the vectors are L.I., so ν determines the p-dimensional subspace
V = span(v1, . . . , vp), and ΛpV = span(ν) is a line in ΛpX .

Inner product of p-blades ν = v1 ∧ . . . ∧ vp and ω = w1 ∧ . . . ∧ wp is

〈ν, ω〉 = det〈vi ,wj〉 =

∣∣∣∣∣∣∣
〈v1,w1〉 · · · 〈v1,wp〉

...
. . .

...
〈vp,w1〉 · · · 〈vp,wp〉

∣∣∣∣∣∣∣ .
Real case: ‖ν‖ =

√
〈ν, ν〉 = p-dim volume of parallelepiped v1 ∧ . . .∧ vp.

Complex case: ‖ν‖2 = 2p-dim volume of v1 ∧R iv1 ∧R . . . ∧R vp ∧R ivp.
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Grassmann angle

Definition

Let V ,W ⊂ X be subspaces, with principal angles θ1, . . . , θm,
P = ProjVW , and P = matrix representing P in orthonormal bases.

The Grassmann angle ΘV ,W ∈ [0, π2 ] of V with W can be defined by:

cos2 ΘV ,W = det(P̄TP).

cos ΘV ,W =

{
cos θ1 · . . . · cos θm if dimV ≤ dimW ,

0 if dimV > dimW .

Example (A’)

In Example A , all vectors in V make a 45◦ angle with W , but ΘV ,W = 60◦.
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Definition (cont.)

Real case: cos ΘV ,W =
volP(S)

volS
, for any measurable set S ⊂ V .

Complex: cos2 ΘV ,W =
volP(S)

vol S
.

cos ΘV ,W =
‖Pν‖
‖ν‖

, for any ν ∈ ΛpV , p = dimV .
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Definition (cont.)

ΘV ,W = angle in ΛpX between the line ΛpV and the subspace ΛpW .



Principal angles Grassmann angle Complementary Blade products Trigonometric identities Pythagorean theorems Refs.

Proposition

ΘV ,W = 0 ⇔ V ⊂W .

ΘV ,W = π
2 ⇔ ∃v ∈ V , v 6= 0, such that v ⊥W .

In general this angle is asymmetric, ΘV ,W 6= ΘW ,V .

Proposition

If dimV = dimW then ΘV ,W = ΘW ,V .



Principal angles Grassmann angle Complementary Blade products Trigonometric identities Pythagorean theorems Refs.

Theorem (Triangle Inequality)

For any subspaces U,V ,W ⊂ X ,

ΘU,W ≤ ΘU,V + ΘV ,W .

ΘV ,W = Fubini-Study distance in the Grassmannian of p-dim subspaces,
and gives quasi-pseudo-metric in the total Grassmannian of all subspaces.
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Complementary Grassmann angle
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Definition

Complementary Grassmann angle Θ⊥V ,W ∈ [0, π2 ] of V and W is the
Grassmann angle of V with the orthogonal complement of W ,

Θ⊥V ,W = ΘV ,W⊥ .

Reason for special notation: it has symmetry that was absent in ΘV ,W .

Proposition

Θ⊥V ,W = Θ⊥W ,V .

Example (A’)

In Example A , all vectors in V make a 45◦ angle with both W and W⊥, so
ΘV ,W = Θ⊥V ,W = 60◦.
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In general, Θ⊥V ,W 6= π
2 −ΘV ,W , because Λp(W⊥) 6= (ΛpW )⊥.
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Proposition

For a line L, the complementary Grassmann angle is the usual
complement,

Θ⊥L,W =
π

2
−ΘL,W ,

so that
cos Θ⊥L,W = sin ΘL,W .

But for higher dimensional subspaces the projection on W⊥ will be given
by a product of sines.

Theorem

If θ1, . . . , θm are the principal angles of V and W then

cos Θ⊥V ,W = sin θ1 · . . . · sin θm.
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Blade Products
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Inner and Exterior products of blades

Theorem

For any blades ν, ω ∈ ΛpX , determining V ,W ⊂ X ,

〈ν, ω〉 = σν,ω‖ν‖‖ω‖ cos ΘV ,W .

σv ,w is a sign ±1 (real case) or phase factor eiϕ (complex case).
It appears because we defined ΘV ,W ∈ [0, π2 ], for non-oriented subspaces.

Theorem

For any blades ν, ω ∈ ΛX , determining V ,W ⊂ X ,

‖ν ∧ ω‖ = ‖ν‖‖ω‖ cos Θ⊥V ,W .
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Interior product of blades

Definition

Interior product νyω of blades ν ∈ ΛpX and ω ∈ ΛqX , with p ≤ q, is the
unique element of Λq−pX such that

〈νyω, τ〉 = 〈ω, ν ∧ τ〉 for all τ ∈ Λq−pX .

Theorem

Given blades ν ∈ ΛpX and ω ∈ ΛqX , with p ≤ q, determining
V ,W ⊂ X , and a principal basis (f1, . . . , fq) of W with respect to V ,

νyω = σν,ω‖ν‖‖ω‖ cos ΘV ,W · fp+1 ∧ . . . ∧ fq.

νyω is a partial inner product, of ν with a subblade of ω where it
projects, leaving another subblade of ω orthogonal to ν.
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Theorem

Let ν ∈ ΛpX , ω ∈ ΛqX be blades, with p ≤ q, determining V ,W ⊂ X ,
and P = ProjW . Then νyω is characterized by:

νyω is a (q − p)-subblade of ω completely orthogonal to ν;

(Pν) ∧ (νyω) has the same orientation of ω;

‖νyω‖
‖Pν‖

=
‖ω‖

1
.
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Trigonometric identities
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Theorem

Given a line L ⊂ X and an orthogonal partition X = V1 ⊕ · · · ⊕ Vk ,

k∑
j=1

cos2 ΘL,Vj = 1.

Example (Direction cosines)

If θx , θy , θz are the angles of a line in R3 with the x , y , z axes then

cos2 θx + cos2 θy + cos2 θz = 1.
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Theorem

For any p-dimensional subspace V ⊂ X ,∑
I

cos2 ΘV ,WI
= 1,

where the WI ’s are all p-dimensional coordinate subspaces of an
ortonormal basis β = {w1, . . . ,wn} of X , i.e.

WI = span(wi1 , . . . ,wip ),

for any multi-index I = (i1, . . . , ip) with 1 ≤ i1 < . . . < ip ≤ n.
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Example

If θxy , θxz , θyz are the angles of a plane in R3 with the coordinate planes
then

cos2 θxy + cos2 θxz + cos2 θyz = 1.
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Generalized Pythagorean theorems
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As Grassmann angles measure volume contraction, these identities give
generalized Pythagorean theorems.

Theorem (Pythagorean theorem for lines)

Given a line L ⊂ X , an orthogonal partition X = V1 ⊕ · · · ⊕ Vk , and a
measurable set S ⊂ L, with orthogonal projection Sj on Vj ,

Real case: lenght(S)2 =
∑

lenght(Sj)
2;

Complex: area(S) =
∑

area(Sj).

Complex case: the measure has twice the dimension, but is not squared.
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Example

lenght(S)2 = lenght(Sx)
2 + lenght(Sy )

2 + lenght(Sz)
2
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Example

Let v1, v2 be orthogonal unit complex vectors, and v = c1v1 + c2v2 for
c1, c2 ∈ C with |c1|2 + |c2|2 = 1. Any area A in Cv projects to areas
A1 = |c1|2 ·A in Cv1 and A2 = |c2|2 ·A in Cv2, with

A = A1 + A2.
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Theorem (Pythagorean theorem for subspaces)

Given a measurable set S in a subspace V ⊂ X , with dimV = p,

Real case: volp(S)2 =
∑

volp(SI )
2,

Complex: vol2p(S) =
∑

vol2p(SI ),

where the SI ’s are the orthogonal projections of S on all p-dimensional
coordinate subspaces of an orthogonal basis of X .
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Example

area(A)2 = area(B)2 + area(C)2 + area(D)2



Principal angles Grassmann angle Complementary Blade products Trigonometric identities Pythagorean theorems Refs.

Example

area(ABC)2 = area(OAB)2 + area(OAC)2 + area(OBC)2
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Obrigado
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