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Process capability indices

• Quality control ensures that products or services meet defined standards.

• This helps us optimize production processes, reduce costs, and improve customer
satisfaction.

• Process Capability Indices (PCIs) offer objective metrics to assess if produced items
meet specifications by measuring the inherent variability of the process.
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PCIs for normal data

The PCIs for normally distributed data are defined as follows:
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where USL and LSL represent the upper and lower specification limits, respectively. The
variable d denotes the tolerance interval adjusted for process variation, T is the target value.
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Classification

PCI Classification Interpretation
< 1.00 Incapable over 2,700 items with nonconformities

1.00− 1.33 Acceptable between 64 and 2,700 nonconforming items

> 1.33 Capable less than 64 nonconforming items



PCIs for non-normal data

The PCIs for non-normally distributed data are defined as follows:
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where Up, M, and Lp represent the 99.865th, 50th, and 0.135th percentiles, respectively.
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PE model

The Piecewise Exponential (PE) model with k change points can be represented by the
following probability density function:

f (t;λ) =
k+1∑
j=1

λj exp
{
−λj

(
t − τ(j−1)

)}
Cj−11Rj

(t),

where:
C0 = 1 and Ci = exp

{
−

i∑
h=1

λh

(
τ(h) − τ(h−1)

)}
, i = 1, . . . , k ,

and 1Rj
(t) = 1 if t ∈ Rj =

(
τ(j−1), τ(j)

]
, and 0 otherwise.



Why PE model?

The failure rate (or hazard) function of a PE model is given by:

h(t;λ) =
k+1∑
j=1

λj1Rj
(t).
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Inference

The log-likelihood function is:

ℓ(λ, τ ) =
k+1∑
j=1

nj
(
log(λj)−

j−1∑
h=1

λh

(
τ(h) − τ(h−1)

))
− λj

∑
i : ti∈Rj

(
ti − τ(j−1)

) ,

where nj is the number of observations in the j-th interval.



MLE

The maximum likelihood estimators (MLEs) of λ given τ are given by:

λ̂j(τ ) = nj

 ∑
i : ti∈Rj

(
ti − τ(j−1)

)
+

k∑
h=j

nh+1

(
τ(j) − τ(j−1)

)−1

, j = 1, . . . , k ,

λ̂k+1(τ ) = nk+1

 ∑
i : ti∈Rk+1

(
ti − τ(k)

)−1

.



Asymptotic distribution

These estimators are asymptotically normally distributed:

√
n(λ̂− λ)

D−→ N(k+1)

(
0, I−1

)
, for n → +∞,

where I is the Fisher information matrix, whose elements are given by

Ijj =
Cj−1 − Cj

λ2
j

, for j = 1, . . . , k + 1,

and Iij(λ) = 0, for i ̸= j .



CIs for the parameters

We can obtain approximate 100(1 − γ)% confidence intervals (CIs) for the parameters of
each partition as follows:

CI [λj ; 100(1− γ)%] = λ̂j ± zγ/2
λ̂j√

n (Cj−1 − Cj)
,

where zγ/2 is the 100(γ/2)-th percentile of a standard normal distribution.



Goals

1. Estimate the bias in the MLEs of the rate parameters, and look at methods to make
these estimators unbiased if needed.

2. Assess a change-point estimation method from the literature to identify changes in
process behavior over time.

3. Calculate the standard error of the PCI estimators to measure their uncertainty.
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Bias-corrected

Let us define the cumulante functions:

hij(λ) = E
[
∂2ℓ(λ)

∂λiλj

]
, h

(l)
ij (λ) =

∂hij(λ)

∂λl
, hijl(λ) = E

[
∂3ℓ(λ)

∂λi∂λj∂λl

]
,

The bias of λ̂ can be expressed as:

Bias(λ̂) ≈ I−1A vec
(
I−1

)
,

where A =
[
A(1) | . . . |A(p)

]
, with A(l) =

{
h
(l)
ij (λ)− 0.5hijl(λ)

}
, for i , j , l = 1, . . . , k + 1.



Table: Calculating Bias and MSE from the estimates for the original parameters of the PE model, varying
n with 10,000 simulated samples. The results of the traditional MLEs are shown between parentheses.

Scenario 1 Scenario 2 Scenario 3
n Bias MSE Bias MSE Bias MSE

λ1

10 -0.015 (0.008) 0.005 (0.006) 0.024 (0.032) 0.001 (0.002) -0.097 (-0.085) 0.011 (0.009)
20 -0.002 (0.010) 0.021 (0.023) 0.001 (0.004) 0.001 (0.002) -0.041 (-0.033) 0.009 (0.009)
30 -0.000 (0.008) 0.016 (0.017) -0.002 (0.000) 0.001 (0.001) -0.023 (-0.017) 0.006 (0.006)
40 0.000 (0.006) 0.012 (0.013) -0.001 (0.000) 0.001 (0.001) -0.013 (-0.008) 0.005 (0.005)
50 -0.000 (0.004) 0.010 (0.010) 0.000 (0.001) 0.001 (0.001) -0.007 (-0.004) 0.004 (0.004)

λ2

10 0.029 (0.094) 0.017 (0.029) 0.065 (0.077) 0.005 (0.006) -0.314 (-0.294) 0.099 (0.087)
20 0.010 (0.040) 0.054 (0.062) 0.015 (0.018) 0.001 (0.001) -0.180 (-0.159) 0.037 (0.031)
30 0.001 (0.020) 0.041 (0.045) 0.004 (0.006) 0.000 (0.000) -0.107 (-0.089) 0.017 (0.014)
40 -0.003 (0.011) 0.030 (0.032) 0.001 (0.002) 0.000 (0.000) -0.067 (-0.051) 0.010 (0.009)
50 0.000 (0.011) 0.024 (0.026) 0.000 (0.001) 0.000 (0.000) -0.040 (-0.026) 0.008 (0.007)

λ3

10 -0.002 (0.352) 0.482 (1.157) 0.016 (4.013) 59.740 (135.860) -0.062 (0.952) 5.413 (14.637)
20 0.007 (0.153) 0.183 (0.318) 0.002 (1.086) 12.354 (16.523) -0.117 (0.833) 3.062 (7.845)
30 0.004 (0.090) 0.081 (0.110) -0.019 (0.621) 6.917 (8.250) -0.090 (0.777) 2.378 (6.021)
40 -0.002 (0.059) 0.054 (0.067) 0.037 (0.502) 5.022 (5.762) -0.036 (0.721) 2.477 (5.662)
50 0.002 (0.050) 0.040 (0.048) 0.016 (0.382) 3.889 (4.334) -0.044 (0.609) 1.676 (3.773)



Change point estimation

The profile likelihood function is given by:

ℓP(τ ) =
k+1∑
j=1

[
nj

(
log
(
λ̂j(τ )

)
−

j−1∑
h=1

λ̂h(τ )(τ(h) − τ(h−1))

)
− λ̂j(τ )

∑
i : ti∈Rj

(
ti − τ(j−1)

) ]
,

The estimated change-points can be determined through a simulated annealing algorithm,
guided by the following linear constraints:

• Trivial constraint: τ(1) < . . . < τ(k).

• Domain constraints: τ(1) > tmin ∧ τ(k) < tmax.

• Density constraints: τ(j) − τ(j−1) > mj .



Table: Bias and MSE estimates for the change-points, varying n with 10,000 samples.

Scenario 1 Scenario 2 Scenario 3
n Bias MSE Bias MSE Bias MSE

τ(1)

10 0.034 0.152 -0.033 0.141 0.129 0.438
20 0.103 0.202 0.047 0.089 -0.001 0.486
30 0.111 0.182 0.044 0.081 -0.084 0.552
40 0.116 0.164 0.061 0.077 -0.124 0.567
50 0.106 0.150 0.070 0.075 -0.141 0.547

τ(2)

10 0.031 0.152 -0.012 0.053 0.183 0.409
20 0.096 0.205 0.004 0.005 0.054 0.477
30 0.104 0.185 0.003 0.002 -0.028 0.552
40 0.109 0.165 0.003 0.000 -0.071 0.577
50 0.101 0.151 0.002 0.000 -0.091 0.557



Delta method

The delta method suggests the following convergence:

√
n (C (λ)− C (λ))

D−→ N
(
0, [∇C (λ)]⊤ · I · ∇C (λ)

)
, for n → +∞.

The CIs for the PCIs is given by:

CI [C (λ); 100(1− γ)%] = C (λ)± zγ/2

√
[∇C (λ)]⊤ · I · ∇C (λ),

where ∇C (λ) is the gradient of C .



Table: Bias, MSE, and CP from the estimates of Cpk and Cpm, considering different values of n with
10,000 simulated samples.

Scenario 1 Scenario 2 Scenario 3
n Bias MSE CP Bias MSE CP Bias MSE CP

Cpk

150 -0.002 0.006 0.940 0.000 0.000 0.955 -0.030 0.029 0.926
160 -0.002 0.006 0.937 0.000 0.000 0.959 -0.030 0.027 0.930
170 -0.002 0.005 0.940 0.000 0.000 0.959 -0.027 0.026 0.926
180 -0.001 0.005 0.946 0.000 0.000 0.956 -0.029 0.024 0.930
190 -0.001 0.005 0.946 0.000 0.000 0.956 -0.028 0.022 0.937
200 -0.001 0.005 0.940 0.000 0.000 0.956 -0.024 0.021 0.939

Cpm

150 -0.009 0.014 0.922 0.018 0.005 0.938 -0.110 0.061 0.933
160 -0.007 0.011 0.935 0.015 0.004 0.943 -0.092 0.050 0.933
170 -0.007 0.009 0.935 0.011 0.003 0.942 -0.078 0.042 0.935
180 -0.006 0.008 0.937 0.009 0.002 0.948 -0.063 0.035 0.934
190 -0.005 0.007 0.940 0.006 0.002 0.948 -0.060 0.032 0.932
200 -0.004 0.006 0.940 0.005 0.001 0.948 -0.050 0.028 0.930



Table: Bias, MSE, and CP from the estimates of C∗
pm and Cpmk , considering different values of n with

10,000 simulated samples.

Scenario 1 Scenario 2 Scenario 3
n Bias MSE CP Bias MSE CP Bias MSE CP

C ∗
pm

150 -0.000 0.000 0.943 0.001 0.000 0.950 -0.016 0.004 0.941
160 -0.000 0.000 0.947 0.001 0.000 0.952 -0.015 0.004 0.943
170 -0.000 0.000 0.946 0.001 0.000 0.952 -0.013 0.003 0.943
180 -0.000 0.000 0.942 0.000 0.000 0.948 -0.013 0.003 0.941
190 -0.000 0.000 0.943 0.000 0.000 0.951 -0.011 0.003 0.945
200 -0.000 0.000 0.940 0.000 0.000 0.953 -0.012 0.003 0.939

Cpmk

150 -0.002 0.001 0.949 0.005 0.002 0.961 -0.030 0.015 0.947
160 -0.002 0.001 0.946 0.004 0.001 0.967 -0.026 0.014 0.949
170 -0.002 0.001 0.952 0.004 0.001 0.963 -0.025 0.013 0.949
180 -0.001 0.001 0.952 0.004 0.001 0.964 -0.026 0.013 0.946
190 -0.001 0.000 0.949 0.002 0.001 0.963 -0.023 0.012 0.947
200 -0.001 0.000 0.948 0.002 0.001 0.959 -0.021 0.011 0.949



Aluminum Electrolytic Capacitor Data

• This case study focuses on aluminum electrolytic capacitor production sourced from a
Taiwanese electronics firm.

• Capacitance ranges from 1 to 1,000 µF, with a target value of 300 µF.

• The LSL and USL for capacitance are 285 µF and 315 µF, respectively.

• The Shapiro-Wilk test returned a p-value of 0.009553.
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Aluminum Electrolytic Capacitor Data
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Aluminum Electrolytic Capacitor Data

Table: Estimates and 95% CIs for the parameters, change-points, and PCIs of the PE model.

Parameter/PCI Estimate CI (95%)

λ1 0.05 (0.04, 0.07)
λ2 0.18 (0.13, 0.22)
τ(1) 302 —

Cpk 0.36 (0.26, 0.47)
Cpm 0.67 (0.54, 0.80)
C ∗
pm 0.33 (0.27, 0.40)

Cpmk 0.35 (0.25, 0.45)



Polymer Granules Data

• The data set originates from Arkema, a French chemical company, focusing on polymer
granules’ production.

• The melt index measures the material mass flowing through an opening under specific
temperature and pressure conditions.

• LSL and USL for the melt index are set at 0.6 and 1.2, with a target value of 1.

• A Shapiro-Wilk test returned a p-value of 0.001941.
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Polymer Granules Data
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Polymer Granules Data

Table: Estimates and 95% CIs for the parameters, change-points, and PCIs of the PE model.

Parameter/PCI Estimate CI (95%)

λ1 2.00 (0.94, 3.06)
λ2 5.34 (3.39, 7.29)
λ2 22.28 (15.17, 29.4)
τ(1) 0.84 —
τ(2) 0.95 —

Cpk 0.95 (0.66, 1.25)
Cpm 1.21 (1.00, 1.41)
C ∗
pm 0.40 (0.33, 0.47)

Cpmk 0.79 (0.60, 0.98)



Conclusion

• A flexible and interpretable semiparametric approach for process capability analysis
was developed, suited for non-normal data.

• The MLEs of the piecewise exponential model are unbiased except for the last interval.
However, the bias-corrected MLE effectively addresses this imprecision.

• The profiled ML method accurately estimates the change points with minimal bias.

• The Delta method efficiently estimates the indices, providing unbiased PCI estimates
and precise confidence intervals.

• Sensitivity analysis confirmed the robustness of the approach, ensuring reliable results
across diverse data sets.
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