Improved process capability assessment through semiparametric piecewise modeling IX Meeting of the UFBA Graduate Program in Mathematics

Nixon Jerez-Lillo

Facultad de Matemáticas Pontificia Universidad Católica de Chile

November 18, 2024

Collaborative work

JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION https://doi.org/10.1080/00949655.2024.2366364

Check for updates

Improved process capability assessment through semiparametric piecewise modeling

Vinicius da Costa Soaresa, Nixon Jerez-Lillo $^{\rm b},$ Paulo Henrique Ferreiraa and Pedro Luiz Ramos $^{\rm b}$

^aDepartment of Statistics, Federal University of Bahia, Salvador, Brazil; ^bFaculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile

Overview

- 1. Process capability indices
- 2. Piecewise exponential model
- 3. Goals
- 4. Methodology
- 5. Real-data applications
- 6. Conclusion

• Quality control ensures that products or services meet defined standards.

- Quality control ensures that products or services meet defined standards.
- This helps us optimize production processes, reduce costs, and improve customer satisfaction.

- Quality control ensures that products or services meet defined standards.
- This helps us optimize production processes, reduce costs, and improve customer satisfaction.
- Process Capability Indices (PCIs) offer objective metrics to assess if produced items meet specifications by measuring the inherent variability of the process.

$$C_{pk} = \min\left(\frac{\mathsf{USL}-\mu}{3\sigma}, \frac{\mu-\mathsf{LSL}}{3\sigma}\right)$$

$$C_{pk} = \min\left(\frac{\mathsf{USL} - \mu}{3\sigma}, \frac{\mu - \mathsf{LSL}}{3\sigma}\right)$$
$$C_{pm} = \frac{\mathsf{USL} - \mathsf{LSL}}{3\sqrt{\sigma^2 + (\mu - T)^2}}$$

$$C_{pk} = \min\left(\frac{\text{USL} - \mu}{3\sigma}, \frac{\mu - \text{LSL}}{3\sigma}\right)$$
$$C_{pm} = \frac{\text{USL} - \text{LSL}}{3\sqrt{\sigma^2 + (\mu - T)^2}}$$
$$C_{pm}^* = \frac{d}{3\sqrt{\sigma^2 + (\mu - T)^2}}$$

The PCIs for normally distributed data are defined as follows:

$$C_{\rho k} = \min\left(\frac{\mathsf{USL} - \mu}{3\sigma}, \frac{\mu - \mathsf{LSL}}{3\sigma}\right)$$
$$C_{\rho m} = \frac{\mathsf{USL} - \mathsf{LSL}}{3\sqrt{\sigma^2 + (\mu - T)^2}}$$
$$C_{\rho m}^* = \frac{d}{3\sqrt{\sigma^2 + (\mu - T)^2}}$$
$$C_{\rho m k} = \min\left(\frac{\mathsf{USL} - \mu}{3\sqrt{\sigma^2 + (\mu - T)^2}}, \frac{\mu - \mathsf{LSL}}{3\sqrt{\sigma^2 + (\mu - T)^2}}\right)$$

where USL and LSL represent the upper and lower specification limits, respectively. The variable d denotes the tolerance interval adjusted for process variation, T is the target value.

Classification

PCI	Classification	Interpretation
< 1.00	Incapable	over 2,700 items with nonconformities
1.00 - 1.33	Acceptable	between 64 and 2,700 nonconforming items
> 1.33	Capable	less than 64 nonconforming items

$$C_{pk} = \min\left(\frac{\text{USL} - M}{U_p - M}, \frac{M - \text{LSL}}{M - L_p}\right)$$

$$C_{pk} = \min\left(\frac{\text{USL} - M}{U_p - M}, \frac{M - \text{LSL}}{M - L_p}\right)$$
$$C_{pm} = \frac{\text{USL} - \text{LSL}}{3\sqrt{\left(\frac{U_p - L_p}{3}\right)^2 + (M - T)^2}}$$

$$C_{pk} = \min\left(\frac{\text{USL} - M}{U_p - M}, \frac{M - \text{LSL}}{M - L_p}\right)$$
$$C_{pm} = \frac{\text{USL} - \text{LSL}}{3\sqrt{\left(\frac{U_p - L_p}{3}\right)^2 + (M - T)^2}}$$
$$C_{pm}^* = \frac{\min(\text{USL} - T, T - \text{LSL})}{3\sqrt{\left(\frac{U_p - L_p}{3}\right)^2 + (M - T)^2}}$$

The PCIs for non-normally distributed data are defined as follows:

 $C_{pk} = \min\left(\frac{\text{USL} - M}{M}, \frac{M - \text{LSL}}{M}\right)$ $C_{pm} = \frac{OSL - LSL}{3\sqrt{\left(\frac{U_p - L_p}{2}\right)^2 + (M - T)^2}}$ $C_{pm}^{*} = \frac{\min(\text{USL} - T, T - \text{LSL})}{3\sqrt{\left(\frac{U_p - L_p}{3}\right)^2 + (M - T)^2}}$ $C_{pmk} = \min\left(\frac{\text{USL} - M}{3\sqrt{\left(\frac{U_p - M}{2}\right)^2 + (M - T)^2}}, \frac{M - \text{LSL}}{3\sqrt{\left(\frac{M - L_p}{2}\right)^2 + (M - T)^2}}\right)$

where U_p , M, and L_p represent the 99.865th, 50th, and 0.135th percentiles, respectively.

The Piecewise Exponential (PE) model with k change points can be represented by the following probability density function:

$$f(t; \boldsymbol{\lambda}) = \sum_{j=1}^{k+1} \lambda_j \exp \left\{ -\lambda_j \left(t - \tau_{(j-1)} \right) \right\} C_{j-1} \mathbb{1}_{\mathcal{R}_j}(t),$$

where:

$$C_0 = 1$$
 and $C_i = \exp\left\{-\sum_{h=1}^i \lambda_h \left(au_{(h)} - au_{(h-1)}
ight)
ight\}, i = 1, \dots, k,$

and $\mathbb{1}_{\mathcal{R}_j}(t) = 1$ if $t \in \mathcal{R}_j = (\tau_{(j-1)}, \tau_{(j)}]$, and 0 otherwise.

The failure rate (or hazard) function of a PE model is given by:

$$h(t; \boldsymbol{\lambda}) = \sum_{j=1}^{k+1} \lambda_j \mathbb{1}_{\mathcal{R}_j}(t).$$

Why PE model?

The log-likelihood function is:

$$\ell(\boldsymbol{\lambda}, \boldsymbol{\tau}) = \sum_{j=1}^{k+1} \left[n_j \left(\log(\lambda_j) - \sum_{h=1}^{j-1} \lambda_h \left(\tau_{(h)} - \tau_{(h-1)} \right) \right) - \lambda_j \sum_{i: t_i \in \mathcal{R}_j} \left(t_i - \tau_{(j-1)} \right) \right],$$

where n_j is the number of observations in the *j*-th interval.

The maximum likelihood estimators (MLEs) of λ given τ are given by:

$$\widehat{\lambda}_{j}(\boldsymbol{\tau}) = n_{j} \left(\sum_{i: t_{i} \in \mathcal{R}_{j}} \left(t_{i} - \tau_{(j-1)} \right) + \sum_{h=j}^{k} n_{h+1} \left(\tau_{(j)} - \tau_{(j-1)} \right) \right)^{-1}, \quad j = 1, \dots, k,$$
$$\widehat{\lambda}_{k+1}(\boldsymbol{\tau}) = n_{k+1} \left(\sum_{i: t_{i} \in \mathcal{R}_{k+1}} \left(t_{i} - \tau_{(k)} \right) \right)^{-1}.$$

These estimators are asymptotically normally distributed:

$$\sqrt{n}(\widehat{oldsymbol{\lambda}}-oldsymbol{\lambda}) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}_{(k+1)}\left(0,\,\mathcal{I}^{-1}
ight), \quad ext{for} \ n o +\infty,$$

where $\ensuremath{\mathcal{I}}$ is the Fisher information matrix, whose elements are given by

$$\mathcal{I}_{jj} = rac{\mathcal{C}_{j-1} - \mathcal{C}_j}{\lambda_j^2}, \quad ext{for } j = 1, \dots, k+1,$$

and $\mathcal{I}_{ij}(oldsymbol{\lambda})=$ 0, for i
eq j.

We can obtain approximate $100(1 - \gamma)\%$ confidence intervals (CIs) for the parameters of each partition as follows:

$$\mathsf{CI}\left[\lambda_{j};100(1-\gamma)\%
ight]=\widehat{\lambda}_{j}\pm z_{\gamma/2}rac{\widehat{\lambda}_{j}}{\sqrt{n\left(C_{j-1}-C_{j}
ight)}},$$

where $z_{\gamma/2}$ is the 100($\gamma/2$)-th percentile of a standard normal distribution.

1. Estimate the bias in the MLEs of the rate parameters, and look at methods to make these estimators unbiased if needed.

- 1. Estimate the bias in the MLEs of the rate parameters, and look at methods to make these estimators unbiased if needed.
- 2. Assess a change-point estimation method from the literature to identify changes in process behavior over time.

- 1. Estimate the bias in the MLEs of the rate parameters, and look at methods to make these estimators unbiased if needed.
- 2. Assess a change-point estimation method from the literature to identify changes in process behavior over time.
- 3. Calculate the standard error of the PCI estimators to measure their uncertainty.

Let us define the cumulante functions:

$$h_{ij}(\boldsymbol{\lambda}) = \mathbb{E}\left[rac{\partial^2 \ell(\boldsymbol{\lambda})}{\partial \lambda_i \lambda_j}
ight], \quad h_{ij}^{(l)}(\boldsymbol{\lambda}) = rac{\partial h_{ij}(\boldsymbol{\lambda})}{\partial \lambda_l}, \quad h_{ijl}(\boldsymbol{\lambda}) = \mathbb{E}\left[rac{\partial^3 \ell(\boldsymbol{\lambda})}{\partial \lambda_i \partial \lambda_j \partial \lambda_l}
ight],$$

The bias of $\widehat{\lambda}$ can be expressed as:

$$\mathsf{Bias}(\widehat{oldsymbol{\lambda}}) pprox \mathcal{I}^{-1} \mathsf{A} \operatorname{\mathsf{vec}}ig(\mathcal{I}^{-1}ig),$$

where $A = [A^{(1)} | \dots | A^{(p)}]$, with $A^{(l)} = \{h_{ij}^{(l)}(\lambda) - 0.5h_{ijl}(\lambda)\}$, for $i, j, l = 1, \dots, k + 1$.

Table: Calculating Bias and MSE from the estimates for the original parameters of the PE model, varying n with 10,000 simulated samples. The results of the traditional MLEs are shown between parentheses.

		Scena	ario 1	Sce	nario 2	Scen	Scenario 3		
	n	Bias	MSE	Bias	MSE	Bias	MSE		
	10	-0.015 (0.008)	0.005 (0.006)	0.024 (0.032)	0.001 (0.002)	-0.097 (-0.085)	0.011 (0.009)		
	20	-0.002 (0.010)	0.021 (0.023)	0.001 (0.004)	0.001 (0.002)	-0.041 (-0.033)	0.009 (0.009)		
λ_1	30	-0.000 (0.008)	0.016 (0.017)	-0.002 (0.000)	0.001 (0.001)	-0.023 (-0.017)	0.006 (0.006)		
	40	0.000 (0.006)	0.012 (0.013)	-0.001 (0.000)	0.001 (0.001)	-0.013 (-0.008)	0.005 (0.005)		
	50	-0.000 (0.004)	0.010 (0.010)	0.000 (0.001)	0.001 (0.001)	-0.007 (-0.004)	0.004 (0.004)		
	10	0.029 (0.094)	0.017 (0.029)	0.065 (0.077)	0.005 (0.006)	-0.314 (-0.294)	0.099 (0.087)		
λ_2	20	0.010 (0.040)	0.054 (0.062)	0.015 (0.018)	0.001 (0.001)	-0.180 (-0.159)	0.037 (0.031)		
	30	0.001 (0.020)	0.041 (0.045)	0.004 (0.006)	0.000 (0.000)	-0.107 (-0.089)	0.017 (0.014)		
	40	-0.003 (0.011)	0.030 (0.032)	0.001 (0.002)	0.000 (0.000)	-0.067 (-0.051)	0.010 (0.009)		
	50	0.000 (0.011)	0.024 (0.026)	0.000 (0.001)	0.000 (0.000)	-0.040 (-0.026)	0.008 (0.007)		
	10	-0.002 (0.352)	0.482 (1.157)	0.016 (4.013)	59.740 (135.860)	-0.062 (0.952)	5.413 (14.637)		
λ_3	20	0.007 (0.153)	0.183 (0.318)	0.002 (1.086)	12.354 (16.523)	-0.117 (0.833)	3.062 (7.845)		
	30	0.004 (0.090)	0.081 (0.110)	-0.019 (0.621)	6.917 (8.250)	-0.090 (0.777)	2.378 (6.021)		
	40	-0.002 (0.059)	0.054 (0.067)	0.037 (0.502)	5.022 (5.762)	-0.036 (0.721)	2.477 (5.662)		
	50	0.002 (0.050)	0.040 (0.048)	0.016 (0.382)	3.889 (4.334)	-0.044 (0.609)	1.676 (3.773)		

The profile likelihood function is given by:

$$\ell_{\mathsf{P}}(\boldsymbol{\tau}) = \sum_{j=1}^{k+1} \left[n_j \left(\log \left(\widehat{\lambda}_j(\boldsymbol{\tau}) \right) - \sum_{h=1}^{j-1} \widehat{\lambda}_h(\boldsymbol{\tau}) (\tau_{(h)} - \tau_{(h-1)}) \right) - \widehat{\lambda}_j(\boldsymbol{\tau}) \sum_{i: \ t_i \in \mathcal{R}_j} \left(t_i - \tau_{(j-1)} \right) \right],$$

The estimated change-points can be determined through a simulated annealing algorithm, guided by the following linear constraints:

- Trivial constraint: $\tau_{(1)} < \ldots < \tau_{(k)}$.
- Domain constraints: $\tau_{(1)} > t_{\min} \land \tau_{(k)} < t_{\max}$.
- Density constraints: $\tau_{(j)} \tau_{(j-1)} > m_j$.

		Scenario 1		Scena	rio 2	Scen	iario 3
	n	Bias	MSE	Bias	MSE	Bias	MSE
	10	0.034	0.152	-0.033	0.141	0.129	0.438
	20	0.103	0.202	0.047	0.089	-0.001	0.486
$\tau_{(1)}$	30	0.111	0.182	0.044	0.081	-0.084	0.552
	40	0.116	0.164	0.061	0.077	-0.124	0.567
	50	0.106	0.150	0.070	0.075	-0.141	0.547
	10	0.031	0.152	-0.012	0.053	0.183	0.409
	20	0.096	0.205	0.004	0.005	0.054	0.477
$\tau_{(2)}$	30	0.104	0.185	0.003	0.002	-0.028	0.552
()	40	0.109	0.165	0.003	0.000	-0.071	0.577
	50	0.101	0.151	0.002	0.000	-0.091	0.557

Table: Bias and MSE estimates for the change-points, varying n with 10,000 samples.

The delta method suggests the following convergence:

$$\sqrt{n}\left(C(\boldsymbol{\lambda})-C(\boldsymbol{\lambda})
ight)\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}\left(0,\left[
abla C(\boldsymbol{\lambda})
ight]^{ op}\cdot\mathcal{I}\cdot
abla C(\boldsymbol{\lambda})
ight), \quad ext{for } n
ightarrow+\infty.$$

The CIs for the PCIs is given by:

$$\mathsf{CI}\left[\mathcal{C}(\boldsymbol{\lambda});100(1-\gamma)\%\right]=\mathcal{C}(\boldsymbol{\lambda})\pm z_{\gamma/2}\sqrt{\left[\nabla\mathcal{C}(\boldsymbol{\lambda})\right]^{\top}\cdot\mathcal{I}\cdot\nabla\mathcal{C}(\boldsymbol{\lambda})},$$

where $\nabla C(\lambda)$ is the gradient of C.

Table: Bias, MSE, and CP from the estimates of C_{pk} and C_{pm} , considering different values of *n* with 10,000 simulated samples.

		Scenario 1				Scenario 2				Scenario 3		
	п	Bias	MSE	CP	-	Bias	MSE	CP		Bias	MSE	CP
	150	-0.002	0.006	0.940		0.000	0.000	0.955		-0.030	0.029	0.926
	160	-0.002	0.006	0.937		0.000	0.000	0.959		-0.030	0.027	0.930
C	170	-0.002	0.005	0.940		0.000	0.000	0.959		-0.027	0.026	0.926
C_{pk}	180	-0.001	0.005	0.946		0.000	0.000	0.956		-0.029	0.024	0.930
	190	-0.001	0.005	0.946		0.000	0.000	0.956		-0.028	0.022	0.937
	200	-0.001	0.005	0.940		0.000	0.000	0.956		-0.024	0.021	0.939
	150	-0.009	0.014	0.922		0.018	0.005	0.938		-0.110	0.061	0.933
	160	-0.007	0.011	0.935		0.015	0.004	0.943		-0.092	0.050	0.933
C	170	-0.007	0.009	0.935		0.011	0.003	0.942		-0.078	0.042	0.935
C _{pm}	180	-0.006	0.008	0.937		0.009	0.002	0.948		-0.063	0.035	0.934
	190	-0.005	0.007	0.940		0.006	0.002	0.948		-0.060	0.032	0.932
	200	-0.004	0.006	0.940		0.005	0.001	0.948		-0.050	0.028	0.930

Table: Bias, MSE, and CP from the estimates of C_{pm}^* and C_{pmk} , considering different values of *n* with 10,000 simulated samples.

		Scenario 1				Scenario 2			Scenario 3		
	n	Bias	MSE	CP	-	Bias	MSE	CP	 Bias	MSE	CP
	150	-0.000	0.000	0.943		0.001	0.000	0.950	-0.016	0.004	0.941
	160	-0.000	0.000	0.947		0.001	0.000	0.952	-0.015	0.004	0.943
C *	170	-0.000	0.000	0.946		0.001	0.000	0.952	-0.013	0.003	0.943
C_{pm}	180	-0.000	0.000	0.942		0.000	0.000	0.948	-0.013	0.003	0.941
	190	-0.000	0.000	0.943		0.000	0.000	0.951	-0.011	0.003	0.945
	200	-0.000	0.000	0.940		0.000	0.000	0.953	-0.012	0.003	0.939
	150	-0.002	0.001	0.949		0.005	0.002	0.961	-0.030	0.015	0.947
	160	-0.002	0.001	0.946		0.004	0.001	0.967	-0.026	0.014	0.949
C	170	-0.002	0.001	0.952		0.004	0.001	0.963	-0.025	0.013	0.949
C_{pmk}	180	-0.001	0.001	0.952		0.004	0.001	0.964	-0.026	0.013	0.946
	190	-0.001	0.000	0.949		0.002	0.001	0.963	-0.023	0.012	0.947
	200	-0.001	0.000	0.948		0.002	0.001	0.959	-0.021	0.011	0.949

• This case study focuses on aluminum electrolytic capacitor production sourced from a Taiwanese electronics firm.

- This case study focuses on aluminum electrolytic capacitor production sourced from a Taiwanese electronics firm.
- Capacitance ranges from 1 to 1,000 μ F, with a target value of 300 μ F.

- This case study focuses on aluminum electrolytic capacitor production sourced from a Taiwanese electronics firm.
- Capacitance ranges from 1 to 1,000 $\mu F,$ with a target value of 300 $\mu F.$
- The LSL and USL for capacitance are 285 μF and 315 $\mu F,$ respectively.

- This case study focuses on aluminum electrolytic capacitor production sourced from a Taiwanese electronics firm.
- Capacitance ranges from 1 to 1,000 $\mu F,$ with a target value of 300 $\mu F.$
- The LSL and USL for capacitance are 285 μF and 315 $\mu F,$ respectively.
- The Shapiro-Wilk test returned a *p*-value of 0.009553.

Table: Estimates and 95% CIs for the parameters, change-points, and PCIs of the PE model.

Parameter/PCI	Estimate	CI (95%)
λ_1	0.05	(0.04, 0.07)
λ_2	0.18	(0.13, 0.22)
$ au_{(1)}$	302	_
C _{pk}	0.36	(0.26, 0.47)
C_{pm}	0.67	(0.54, 0.80)
C_{pm}^*	0.33	(0.27, 0.40)
C_{pmk}	0.35	(0.25, 0.45)

• The data set originates from Arkema, a French chemical company, focusing on polymer granules' production.

- The data set originates from Arkema, a French chemical company, focusing on polymer granules' production.
- The melt index measures the material mass flowing through an opening under specific temperature and pressure conditions.

- The data set originates from Arkema, a French chemical company, focusing on polymer granules' production.
- The melt index measures the material mass flowing through an opening under specific temperature and pressure conditions.
- LSL and USL for the melt index are set at 0.6 and 1.2, with a target value of 1.

- The data set originates from Arkema, a French chemical company, focusing on polymer granules' production.
- The melt index measures the material mass flowing through an opening under specific temperature and pressure conditions.
- LSL and USL for the melt index are set at 0.6 and 1.2, with a target value of 1.
- A Shapiro-Wilk test returned a *p*-value of 0.001941.

Polymer Granules Data

Table: Estimates and 95% CIs for the parameters, change-points, and PCIs of the PE model.

Parameter/PCI	Estimate	CI (95%)
λ_1	2.00	(0.94, 3.06)
λ_2	5.34	(3.39, 7.29)
λ_2	22.28	(15.17, 29.4)
$ au_{(1)}$	0.84	_
$\tau_{(2)}$	0.95	—
C _{pk}	0.95	(0.66, 1.25)
C_{pm}	1.21	(1.00, 1.41)
C_{pm}^*	0.40	(0.33, 0.47)
C_{pmk}	0.79	(0.60, 0.98)

• A flexible and interpretable semiparametric approach for process capability analysis was developed, suited for non-normal data.

- A flexible and interpretable semiparametric approach for process capability analysis was developed, suited for non-normal data.
- The MLEs of the piecewise exponential model are unbiased except for the last interval. However, the bias-corrected MLE effectively addresses this imprecision.

- A flexible and interpretable semiparametric approach for process capability analysis was developed, suited for non-normal data.
- The MLEs of the piecewise exponential model are unbiased except for the last interval. However, the bias-corrected MLE effectively addresses this imprecision.
- The profiled ML method accurately estimates the change points with minimal bias.

- A flexible and interpretable semiparametric approach for process capability analysis was developed, suited for non-normal data.
- The MLEs of the piecewise exponential model are unbiased except for the last interval. However, the bias-corrected MLE effectively addresses this imprecision.
- The profiled ML method accurately estimates the change points with minimal bias.
- The Delta method efficiently estimates the indices, providing unbiased PCI estimates and precise confidence intervals.

- A flexible and interpretable semiparametric approach for process capability analysis was developed, suited for non-normal data.
- The MLEs of the piecewise exponential model are unbiased except for the last interval. However, the bias-corrected MLE effectively addresses this imprecision.
- The profiled ML method accurately estimates the change points with minimal bias.
- The Delta method efficiently estimates the indices, providing unbiased PCI estimates and precise confidence intervals.
- Sensitivity analysis confirmed the robustness of the approach, ensuring reliable results across diverse data sets.

- A flexible and interpretable semiparametric approach for process capability analysis was developed, suited for non-normal data.
- The MLEs of the piecewise exponential model are unbiased except for the last interval. However, the bias-corrected MLE effectively addresses this imprecision.
- The profiled ML method accurately estimates the change points with minimal bias.
- The Delta method efficiently estimates the indices, providing unbiased PCI estimates and precise confidence intervals.
- Sensitivity analysis confirmed the robustness of the approach, ensuring reliable results across diverse data sets.

References

Cox, D. R., & Snell, E. J. (1968).

A general definition of residuals.

Journal of the Royal Statistical Society: Series B (Methodological), 30(2), 248–265.

🔋 Goodman, M. S., Li, Y., & Tiwari, R. C. (2011)

Detecting multiple change points in piecewise constant hazard functions. *Journal of Applied Statistics*, **38**(11), 2523–2532.

Pearn, W. L., & Chen, K. S. (1997).

Capability indices for non-normal distributions with an application in electrolytic capacitor manufacturing.

Microelectronics Reliability, 37(12), 1853–1858.

Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3).

Cambridge University Press.

Improved process capability assessment through semiparametric piecewise modeling IX Meeting of the UFBA Graduate Program in Mathematics

Nixon Jerez-Lillo

Facultad de Matemáticas Pontificia Universidad Católica de Chile

November 18, 2024