A functional Central Limit theorem for the general Brownian motion on the half-line

Eduardo Sampaio Pimenta advisors: Tertuliano Franco and Dirk Erhard.

Universidade Federal da Bahia - UFBA

19 de Novembro, 2024

Joint work with:

- ▶ Dr. Dirk Erhard (UFBA),
- ▶ Dr. Milton Jara (IMPA),
- ▶ Dr. Tertuliano Franco (UFBA).

▶ For each $n \in \mathbb{N}$ consider Banach spaces B_n and B .

General Framework

- ▶ For each $n \in \mathbb{N}$ consider Banach spaces B_n and B .
- Acting on these spaces, consider {T_n(t) : t ≥ 0} and {T(t) : t ≥ 0} strongly continuous contraction semigroups, with generators L_n and L respectively. Also, denote by D(L) the domain where the generator L is defined, as well for D(L_n).

General Framework

- ▶ For each $n \in \mathbb{N}$ consider Banach spaces B_n and B .
- Acting on these spaces, consider $\{\mathsf{T}_n(t) : t \ge 0\}$ and $\{\mathsf{T}(t) : t \ge 0\}$ strongly continuous contraction semigroups, with generators L_n and L respectively. Also, denote by $\mathfrak{D}(\mathsf{L})$ the domain where the generator L is defined, as well for $\mathfrak{D}(\mathsf{L}_n)$.
- ▶ Finally, let $\pi_n, \Xi_n : \mathsf{B} \to \mathsf{B}_n$ linear operators.

 π_n are the natural projections while Ξ_n will play an important role ensuring convergence.

By $\mathfrak{D}(\mathsf{L}^2)$ we mean that $f, \mathsf{L}f \in \mathfrak{D}(\mathsf{L})$. Define by $\Phi_n := \pi_n + \Xi_n$ (A) If $f \in \mathsf{B}$ then $\Phi f \in \mathfrak{D}(\mathsf{L}^2)$,

By $\mathfrak{D}(\mathsf{L}^2)$ we mean that $f, \mathsf{L}f \in \mathfrak{D}(\mathsf{L})$. Define by $\Phi_n := \pi_n + \Xi_n$ (A) If $f \in \mathsf{B}$ then $\Phi f \in \mathfrak{D}(\mathsf{L}^2)$,

(B) There exist sequences $s_n^1 \downarrow 0$, $s_n^2 \downarrow 0$ and $s_n^3 \downarrow 0$ such that, for any $f \in \mathfrak{D}(\mathsf{L}^2)$,

$$\|\pi_n \mathsf{L} f - \mathsf{L}_n \Phi_n f\| \le s_n^1 \|f\| + s_n^2 \|\mathsf{L} f\| + s_n^3 \|\mathsf{L}^2 \mathsf{f}\| .$$

By $\mathfrak{D}(\mathsf{L}^2)$ we mean that $f, \mathsf{L}f \in \mathfrak{D}(\mathsf{L})$. Define by $\Phi_n := \pi_n + \Xi_n$ (A) If $f \in \mathsf{B}$ then $\Phi f \in \mathfrak{D}(\mathsf{L}^2)$,

(B) There exist sequences $s_n^1 \downarrow 0$, $s_n^2 \downarrow 0$ and $s_n^3 \downarrow 0$ such that, for any $f \in \mathfrak{D}(\mathsf{L}^2)$,

$$\|\pi_n \mathsf{L} f - \mathsf{L}_n \Phi_n f\| \le s_n^1 \|f\| + s_n^2 \|\mathsf{L} f\| + s_n^3 \|\mathsf{L}^2 \mathsf{f}\| .$$

(C) There exist sequences $r_n^1 \downarrow 0$ and $r_n^2 \downarrow 0$ such that, $f \in \mathfrak{D}(\mathsf{L}^2),$ $\|\Xi_n f\| < r_n^1 \|f\| + r_n^2 \|\mathsf{L}f\|$.

Under hypotheses A - C, for any $f \in \mathfrak{D}(L^2)$ and for each t in a compact interval [0, b] we have that

$$\begin{aligned} \|\mathsf{T}_{n}(t)\pi_{n}f - \pi_{n}\mathsf{T}(t)f\| &\lesssim \max\{s_{n}^{1}, r_{n}^{1}\} \|f\| + \max\{s_{n}^{2}, r_{n}^{1}, r_{n}^{2}\} \|\mathsf{L}f\| \\ &+ \max\{s_{n}^{3}, r_{n}^{2}\} \|\mathsf{L}^{2}f\| \end{aligned}$$

By $f \lesssim g$ we mean that there exists a cosntant c > 0 such that $f \leq cg$ in the hole space

Let (S, d) be a Polish space (separable completely metrizable topological space). By $C_0(S)$ we denote the space of continuous functions vanishing at infinity, i.e., fixed any $x_0 \in S$

$$\lim_{d(x,x_0)\to\infty} f(X) = 0.$$

(I) the Banach space $C_0(S)$ is equipped with the uniform topology, π_n is solely the restriction of S to a subset S_n , i.e., $\pi_n f = f|_{S_n}$

- (I) the Banach space $C_0(S)$ is equipped with the uniform topology, π_n is solely the restriction of S to a subset S_n , i.e., $\pi_n f = f|_{S_n}$
- (II) There is a sequence $\{f_k : k \ge 0\} \subset C_0(\mathsf{S})$ such that span($\{f_k\}$) is dense. Additionally, for every k, there exists $\{f_{j,k}\} \subset \mathfrak{D}(\mathsf{L}^2)$ satisfying that $||f_{j,k} - f_k|| \to 0$ uniformly as $j \to \infty$,

(III) For every j, k, it holds that

$$\|\mathsf{L}f_{j,k}\| \le h_j^1 \|f_k\|$$
 and $\|\mathsf{L}^2 f_{j,k}\| \le h_2^j \|f_k\|$,

where the sequences h_j^1 and h_j^2 satisfies $\sum_{j\geq 0} 2^{-j} h_j^i < \infty$ for i = 1, 2. Moreover, $\sum_{k\geq 0} 2^{-k} ||f_k|| < \infty$ and $\sum_{j,k\geq 0} 2^{-j-k} ||f_{j,k}|| < \infty$. V) The semigroup T associated to the generator L is Lipschitz in the sense that, for each $t \geq 0$, there exists a constant M = M(t) such that

$$|\mathsf{T}(t)f(x) - \mathsf{T}(t)f(y)| \le M \cdot \|f\| \cdot d(x,y)$$

Let us equipp the space of sub-probability measures with a suitable distance that imples vague convergence.

Definition

Let $\{f_k : k \ge 0\} \subset \mathcal{C}_0(\mathsf{S})$ and $\{f_{j,k} : j \ge 0\} \subset \mathfrak{D}(\mathsf{L}^2)$ be as in *II*. We define

$$\mathbf{d}(\mu,\nu) := \sum_{j,k\geq 0} \frac{1}{2^{j+k}} \left(\left| \int f_{j,k} \, d\mu - \int f_{j,k} \, d\nu \right| \wedge 1 \right)$$

for any $\mu, \nu \in \mathcal{M}_{\leq 1}(\mathsf{S})$.

Assume hypotheses A - C and I - IV, Let $\{X(t) : t \in [0, T]\}$ and $\{X_n(t) : t \in [0, T]\}$ be the feller processes on S and S_n associated to L and L_n respectively. Assume that the process starts at $x_n \in S_n$ and $x \in S$ and $d(x, x_n) \leq i_n$ for some $i_n \downarrow 0$. Fix some t > 0. Denote by μ and μ_n the probability distributions on S and S_n induced by X(t) and $X_n(t)$ respectively starting from the points x and x_n . then

$$\mathbf{d}(\mu, \mu_n) \lesssim \max\{i_n, s_n^1, s_n^2, s_n^3, r_n^1, r_n^2\}.$$

Moreover, we also have pathwise convergence $X_n \Rightarrow X$ in the Skorohod space $\mathsf{D}_{\mathsf{S}}[0,\infty)$.

Definition

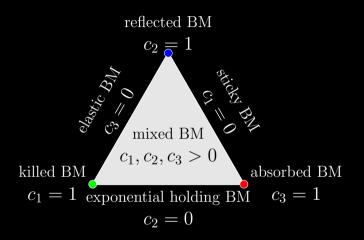
A general Brownian motion on the positive halk-line is a diffusion process W on the set $\mathbb{G} := \{\Delta\} \cup [0, \infty)$ such that the absorbed process $\{W(t \vee T_0) : t \geq 0\}$ on $[0, \infty)$ has the same distribution as B_0 for any startint point $x \geq 0$.

In the definition above, by T_0 we mean the hitting time of zero and B_0 denotes the absorbed BM.

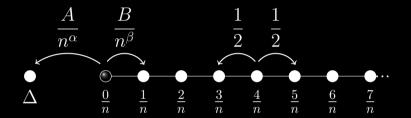
Any general Brownian motion W on $[0,\infty)$ has generator $L = 1/2\Delta$ with corresponding domain

$$\mathfrak{D}(\mathsf{L}) := \{ f \in \mathcal{C}_0^2(\mathbb{G}) : f'' \in \mathsf{C}_0(\mathbb{G}), c_1 f(0) - c_2 f'(0) + c_3 / 2 f''(0) = 0 \}.$$

for some $c_i \geq 0$ such that $c_1 + c_2 + c_3 = 1$ and $c_1 \neq 1$.



Figur: Description of the general Brownian motion on the half-line according to the chosen values of $c_1, c_2, c_3 \ge 0$ on the simplex $c_1 + c_2 + c_3 = 1$. Note that the killed BM, which formally corresponds to $c_1 = 1$, is not rigorously a case of the general BM.



Generator of boundary random walk.

$$\mathsf{L}_{n}f(x) = \begin{cases} \frac{1}{2} \Big[f\left(x + \frac{1}{n}\right) - f(x) \Big] + \frac{1}{2} \Big[f\left(x - \frac{1}{n}\right) - f(x) \Big], \ x = \frac{1}{n}, \frac{2}{n}, \dots \\ \frac{A}{n^{\alpha}} \Big[f\left(\Delta\right) - f(\frac{0}{n}) \Big] + \frac{B}{n^{\beta}} \Big[f\left(\frac{1}{n}\right) - f\left(\frac{0}{n}\right) \Big], \quad \text{for } x = \frac{0}{n}. \end{cases}$$

Fix u, t > 0. Let $\{X_n(t) : t \ge 0\}$ be the boundary random walk of parameters $\alpha, \beta, A, B \ge 0$ sped up by n^2 (that is, whose generator is $n^2 \mathsf{L}_n$), starting from the point $\frac{\lfloor un \rfloor}{n} \in \mathbb{G}_n \subset \mathbb{G}$ and denote by $\mu_n = \mu_n(t)$ the distribution of X_n at time t > 0. Recall the metric **d**, and denote by $\mu = \mu(t)$ the distribution at time t > 0 of the limit process in each of following cases.

Suppose the technical conditions. Then

1. If $\alpha = \beta + 1$ and $\beta \in [0, 1)$, then $\{X_n(t) : t \ge 0\}$ converges weakly to $\{X^{EBM}(t) : t \ge 0\}$ in the J₁-Skorohod topology of $\mathsf{D}_{\mathbb{G}}[0, \infty)$, where X^{EBM} is the elastic BM on $\mathbb{G} = \{\Delta\} \cup \mathbb{R}_{\ge 0}$ of parameters

$$c_1 = \frac{B}{A+B}, \quad c_2 = \frac{A}{A+B} \quad and \quad c_3 = 0$$

starting from the point u. Moreover, 1.1 if $\beta \in (0,1)$, then $\mathbf{d}(\mu_n,\mu) \lesssim \max\{n^{-\beta}, n^{\beta-1}\}$, 1.2 if $\beta = 0$, then $\mathbf{d}(\mu_n,\mu) \lesssim n^{-1}$.

2 If $\alpha \in (2, +\infty]$ and $\beta = 1$, then $\{X_n(t) : t \ge 0\}$ converges weakly to $\{X^{SBM}(t) : t \ge 0\}$ in the J₁-Skorohod topology of $\mathsf{D}_{\mathbb{G}}[0, \infty)$, where X^{SBM} is the sticky BM on $\mathbb{R}_{\ge 0}$ of parameters

$$c_1 = 0, \quad c_2 = \frac{B}{B+1}, \quad and \quad c_3 = \frac{1}{B+1}$$

starting from the point u. Moreover, in this case,

$$\mathbf{d}(\mu_n,\mu) \lesssim \max\{n^{2-\alpha}, n^{-1}\}.$$

3 If $\alpha = 2$ and $\beta \in (1, +\infty]$, then $\{X_n(t) : t \ge 0\}$ converges weakly to $\{X^{EHBM}(t) : t \ge 0\}$ in the J_1 -Skorohod topology of $\mathsf{D}_{\mathbb{G}}[0,\infty)$, where X^{EHBM} is the exponential holding BM on $\mathbb{G} = \{\Delta\} \cup \mathbb{R}_{\ge 0}$ of parameters

$$c_1 = \frac{A}{1+A}, \quad c_2 = 0 \quad and \quad c_3 = \frac{1}{1+A}$$

starting from the point u. Moreover, for $\beta \in (2, \infty)$,

$$\mathbf{d}(\mu_n,\mu) \lesssim \max\{n^{2-\beta}, n^{-1}\}.$$

4 If $\alpha > \beta + 1$ and $\beta \in [0, 1)$, then $\{X_n(t) : t \ge 0\}$ converges weakly to $\{X^{RBM}(t) : t \ge 0\}$ in the J₁-Skorohod topology of $\mathsf{D}_{\mathbb{R}_{\ge 0}}[0, \infty)$, where X^{RBM} is the reflected BM on $\mathbb{R}_{\ge 0}$, of parameters

$$c_1 = 0, \quad c_2 = 1 \quad and \quad c_3 = 0$$

starting from the point u. Moreover, for $\beta \in (0, 1)$, 4.1 if $1 + \beta < \alpha < 2$, then $\mathbf{d}(\mu_n, \mu) \lesssim \max\{n^{-\beta}, n^{-\alpha+\beta+1}, n^{\alpha-2}\}$, 4.2 if $\alpha = 2$, then $\mathbf{d}(\mu_n, \mu) \lesssim \max\{n^{-\beta}, n^{\beta-1}\}$, 4.3 if $\alpha > 2$, then $\mathbf{d}(\mu_n, \mu) \lesssim \max\{n^{2-\alpha}, n^{-\beta}, n^{\beta-1}\}$.

5 If $\alpha \in (2, \infty]$ and $\beta \in (1, +\infty]$, then $\{X_n(t) : t \ge 0\}$ converges weakly to $\{X^{ABM}(t) : t \ge 0\}$ in the J₁-Skorohod topology of $\mathsf{D}_{\mathbb{R}_{\ge 0}}[0, \infty)$, where X^{ABM} is the absorbed BM on $\mathbb{R}_{\ge 0}$, of parameters

$$c_1 = 0, \quad c_2 = 0 \quad and \quad c_3 = 1$$

starting from the point u. Moreover, for $\alpha > 2$ and $\beta > 2$,

$$\mathbf{d}(\mu_n, \mu) \lesssim \max\{n^{2-\alpha}, n^{2-\beta}, n^{-1}\}$$

6 If $\alpha = 2$ and $\beta = 1$, then $\{X_n(t) : t \ge 0\}$ converges weakly to $\{X^{MBM}(t) : t \ge 0\}$ in the J₁-Skorohod topology of $\mathsf{D}_{\mathbb{G}}[0,\infty)$, where X^{MBM} is the mixed BM on $\mathbb{G} = \{\Delta\} \cup \mathbb{R}_{\ge 0}$ of parameters

$$c_1 = \frac{A}{1+A+B}, \quad c_2 = \frac{B}{1+A+B} \quad and \quad c_3 = \frac{1}{1+A+B}$$

starting from the point u. Moreover, $\mathbf{d}(\mu_n, \mu) \lesssim n^{-1}$.

Convergence of the shifted boundary RW to the killed BM

Since the natural state space of the killed BM is $\mathbb{G} = \{\Delta\} \cup (0, \infty)$, we need a different setup. Let $\tau_n : \mathbb{G} \to \mathbb{G}$ be the shift to the right of 1/n given by

$$\tau_n(\Delta) = \Delta$$
 and $\tau_n(u) = u + \frac{1}{n}$ for $u \in [0, \infty)$.

Convergence of the shifted boundary RW to the killed BM

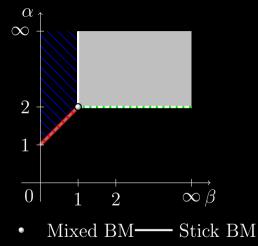
Since the natural state space of the killed BM is $\mathbb{G} = \{\Delta\} \cup (0, \infty)$, we need a different setup. Let $\tau_n : \mathbb{G} \to \mathbb{G}$ be the shift to the right of 1/n given by

$$\tau_n(\Delta) = \Delta$$
 and $\tau_n(u) = u + \frac{1}{n}$ for $u \in [0, \infty)$.

Theorem

If $\alpha < 1 + \beta$ for $\beta \in [0, 1]$, or $\beta > 1$, then $\{\tau_n X_n(t) : t \ge 0\}$ converges weakly to $\{X^{KBM}(t) : t \ge 0\}$ in the J_1 -Skorohod topology of $\mathsf{D}_{\mathbb{G}}[0, \infty)$, where in this case X^{KBM} is the killed BM on $\mathbb{G} = \{\Delta\} \cup (0, +\infty)$, which is formally the general BM of parameters

$$c_1 = 1, \quad c_2 = 0 \quad and \quad c_3 = 0.$$



Absorbed **B**M-- Exp. Holding BM Reflected B^M-- Elastic BM

References

Erhard, D., Franco, T., Jara, M., and Pimenta, E. (2024). A Functional Central Limit Theorem for the General Brownian Motion on the Half-Line. arXiv preprint arXiv:2408.06830.

Thank you.

Fundação de Amparo à Pesquisa do Estado da Bahia

