Sobre a dimensão fractal de atratores em equações de evolução

Arthur Cunha

Universidade Federal da Bahia - UFBA

Salvador - BA, 21 de Novembro de 2024

Trabalho em colaboração com: Alexandre Carvalho (ICMC-USP), José Langa (University of Seville) and James Robinson (Warwick) Let (X, || · ||_X) be a Banach space and S(t) : X → X be an application for each t ≥ 0.

- We say that a family $\{S(t):t\geq 0\}\subset \mathcal{C}(X)$ is a semigroup if
 - i) $S(0) = Id_X$;
 - ii) S(t+s) = S(t)S(s), for all $t, s \ge 0$;
 - iii) The map $S: X \times [0,\infty) \longrightarrow X$ given by S(t)x is continuous.

Suppose that

$$egin{cases} \displaystylerac{d}{dt}u(t,x) &= Fig(u(t,x)ig), \qquad t>0, \qquad x\in\Omega\subset\mathbb{R}^N\ u(0,x) &= u_0(x)\in X \end{cases}$$

has a unique global solution u(t) for each initial data $u_0 \in X$ which is continuous with respect to the initial data.

Defining $S(t): X \longrightarrow X$ by

 $S(t)u_0 := u(t, 0; u_0)$

we have that $\{S(t) : t \ge 0\}$ is a semigroup.

Global attractors

- A set $\mathcal{A} \subset X$ is the global attractor for $\{S(t)\}_{t \ge 0}$ if
 - i) A is compact;
 - ii) A is invariant by $\{S(t)\}_{t\geq 0}$, i.e.,

$$S(t)\mathcal{A}=\mathcal{A}, \quad \forall t\geq 0.$$

iii) A is an attracting set for $\{S(t)\}_{t\geq 0}$, i.e., for all $D \subset X$ bounded we have

 $\lim_{t\to\infty} \operatorname{dist}_H(S(t)D,\mathcal{A})=0,$

where

$$\operatorname{dist}_{H}(B,A) := \sup_{b \in B} \inf_{a \in A} \|b - a\|_{X}.$$

The discrete setting

- A set $\mathcal{A} \subset X$ is the global attractor for a map $S : X \longrightarrow X$ if
 - i) \mathcal{A} is compact.
 - ii) A is invariant by S, i.e., S(A) = A.
 - iii) A is an attracting set for S, i.e., for all $D \subset X$ bounded we have

$$\lim_{n\to\infty} \operatorname{dist}_H(S^n(D),\mathcal{A})=0.$$

• If $S := S(t_0)$ for some t_0 , the global attractors of S and $\{S(t)\}_{t\geq 0}$ coincide.

• Question 1: If A is the attractor of a compact map S, is it a finite-dimensional set?

• Question 2: Among the methods to estimate the fractal dimension of attractors, is it possible to make a comparison (in some sense) between them?

A bit of the path to get some answers for last questions...

• It started at ICMC - USP in 2016 when I first had to choose the problem I would investigate in my PhD.

ICMC and Alexandre Nolasco de Carvalho (Advisor)

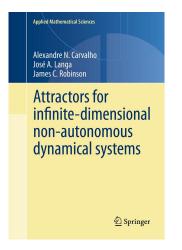
• In 2018 I arrived to Seville and discussed with Alexandre and Langa, obtaining the first partially answers for the problem.

Seville-Spain and José Langa (Coadvisor)

• Yet in 2018 I met James Robinson at the University of Seville, one of the greatest researchers in dimension theory.

James Robinson

• They were the writers of my main reference for the thesis...



Arthur Cunha IME - UFBA

э

• In 2019 I went to Coventry-UK and we finally finished this work.

• Question 1: If A is the attractor of a compact map S, is it a finite-dimensional set?

• Question 2: Among the methods to estimate the fractal dimension of attractors, is it possible to make a comparison (in some sense) between them?

About Question 1

• Answer 1: In general, no!!

For example the map $S:\ell^2 \to \ell^2$ given by

$$(S\mathbf{x})_{j} = \begin{cases} j^{-1} \frac{x_{j}}{|x_{j}|} & , |x_{j}| > j^{-1} \\ x_{j} & , |x_{j}| \le j^{-1}. \end{cases}$$

This map is compact, but its attractor is the set

$$egin{aligned} \mathcal{A} &= \{ \mathbf{x} \in \ell^2: \; |x_j| \leq 1/j \} \ &= [-1,1] imes \left[-rac{1}{2}, rac{1}{2}
ight] imes \left[-rac{1}{2}, rac{1}{2}
ight] imes \left[-rac{1}{3}, rac{1}{3}
ight] imes \cdots \end{aligned}$$

which is an infinite-dimensional subset of ℓ^2 .

However, the answer to this question is yes if as well as being compact S is differentiable:

 $S \operatorname{compact} + \operatorname{differentiable} \implies DS \operatorname{compact} \stackrel{\operatorname{Ma\tilde{n}\acute{e}}}{\Longrightarrow} \operatorname{dim}_F(\mathcal{A}) < \infty.$

- R. Mañé, On the dimension of the compact invariant sets of certain nonlinear maps. Lecture Notes in Mathematics 898, Springer-Verlag, New York, pp. 230-242, 1981.
- A.N. Carvalho, J.A. Langa & J.C. Robinson, *Finite-dimensional global at-tractors in Banach spaces*. Journal of Differential Equations 249, pp. 3099-3109, 2010.

On the fractal dimension of attractors

Theorem (New proof by Carvalho, Cunha, Langa, Robinson - JMAA, 2022)

Let X be a Banach space and A a compact subset of X that is invariant for a continuously differentiable map $S : X \to X$. Suppose that

$$DS(x) = C_x + L_x, \qquad x \in \mathcal{A},$$

where

- C_x and L_x are both linear,
- $C_x : X \to X$ is compact for each $x \in A$,
- C_x is continuous in x (on A),
- there exists $0 < \lambda < 1/4$ such that $\|L_x\|_{\mathcal{L}(X)} \leq \lambda$ for every $x \in \mathcal{A}$.

Then $\dim_{\mathcal{F}}(\mathcal{A}) < \infty$.

The first results on the dimensionality of global attractors

John Mallet-Paret and Ricardo Mañé

Defining the terms

- Let (X, || · ||_X) be a Banach space and A ⊆ X be a compact set.
- Given $\varepsilon > 0$,

$$N_X[\mathcal{A};\varepsilon]$$

denotes the minimum number of ε -balls with centres at points of \mathcal{A} which are necessary to cover \mathcal{A} .

• The fractal dimension of ${\cal A}$ is defined as

$$\dim_{\mathcal{F}}(\mathcal{A}) := \limsup_{\varepsilon \to 0^+} \frac{\log N_X[\mathcal{A};\varepsilon]}{\log 1/\varepsilon}.$$

• One possible answer can be:

Embedding Theorem:

"lf

$$\dim_F(\mathcal{A}) < \frac{n}{2},$$

then \mathcal{A} can be embedded into \mathbb{R}^{n} ."

(Mañé (1981), Hunt/Kaloshin (1999), Robinson (2009), ...)

Obtaining estimates: smoothing method

• Let Z be a Banach space compactly embedded in X.

Let

$$N_{\varepsilon} := N_X[B_Z(0,1); \varepsilon].$$

Theorem (Carvalho, Cunha, Langa, Robinson - JMAA, 2022)

Let Z and X be Banach spaces with Z compactly embedded in X and A a compact subset of X that is invariant for a continuously differentiable map $S : X \to X$. Suppose that

$$DS(x) = C_x + L_x, \qquad x \in \mathcal{A},$$

where

- $C_x \in \mathcal{L}(X, Z)$ and $L_x \in \mathcal{L}(X)$,
- C_x is continuous in x (on A),

Continue...

Theorem (...)

• $C_x : X \to Z$ satisfies the smoothing property for each $x \in A$, i.e., there is $\kappa > 0$ such that

 $\|C_x u\|_Z \le \kappa \|u\|_X$, for all $u \in X$,

• there exists 0 $<\lambda<1/4$ such that

 $\|L_x\|_{\mathcal{L}(X)} \leq \lambda, \qquad \forall x \in \mathcal{A},$

i.e., it holds an (uniformly contraction).

Then for each $\nu \in \left(0, \frac{1}{4} - \lambda\right)$

$$\dim_{\mathcal{F}}(\mathcal{A}; X) \leq \frac{\log N_{(\nu+\lambda)/2\kappa}}{-\log 4(\nu+\lambda)}.$$

Question 2: Among the methods to estimate the fractal dimension of attractors, is it possible to make a comparison (in some sense) between them?

Answer 2: Yes, at least for two of them!

Mañé's method x Smoothing method

• Carvalho, Langa, Robinson (based on Mañé's method, 2010):

 $\dim_{F}(\mathcal{A}) \leq d \sim N \log N.$

 Carvalho, Cunha, Langa, Robinson (based on the smoothing for derivatives, 2022):

 $\dim_B(\mathcal{A}) \leq d \sim \log N.$

Abstract semilinear parabolic problem

$$\begin{cases} u_t + Tu = F(u), & t > 0 \\ u(0) = u_0 \in X^{\alpha} \end{cases}$$

where

- T : D(T) ⊂ X → X is a sectorial operator with compact resolvent;
- $F: X^{\alpha} \longrightarrow X$ is continuously differentiable and Lipschitz on bounded subsets of X^{α} .

2D-Navier Stokes equation on a periodic domain Q

$$u_t + \mu T u + B(u, u) = f,$$

where

T = -PΔ is the Stokes operator (P is the orthogonal projection onto divergence-free fields);

•
$$B(u, u) = P[(u \cdot \nabla)u]$$
 and $\mu > 0$.

In this case,

 $\dim_{\mathsf{F}}(\mathcal{A}; \mathsf{H}) \leq cG^4,$

with

$$G = |f|/\mu^2 \lambda_1$$

the Grashof number.

æ

References

For all the details see:

A.N. Carvalho, A.C. Cunha, J.A. Langa & J.C. Robinson, *Finite-dimensional negatively invariant subsets of Banach spaces*. Journal of Mathematical Analysis and Applications **509**, 2022.

For other papers on the fractal dimension see:

- A.N. Carvalho, H. Cui, A.C. Cunha & J.A. Langa, Smoothing and finitedimensionality of uniform attractors in Banach spaces. Journal of Differential Equations 285, pp. 383-428, 2021.

H. Cui, A.C. Cunha & J.A. Langa, *Finite-dimensionality of tempered random uniform attractors*. Journal of Nonlinear Science **32**, 2022.

V.T. Azevedo, E.M. Bonotto, A.C. Cunha & M.J.D. Nascimento, *Existence and stability of pullback exponential attractors for a non-autonomous semi-linear evolution equation of second order*. Journal of Differential Equations 365, p. 521-559, 2023.

Bibliography

- A.N. Carvalho, J.A. Langa & J.C. Robinson, *Finite-dimensional global attractors in Banach spaces*. Journal of Differential Equations **249**, pp. 3099-3109, 2010.
- A.N. Carvalho, A.C. Cunha, J.A. Langa & J.C. Robinson, *Finite-dimensional negatively invariant subsets of Banach spaces*. Journal of Mathematical Analysis and Applications 509, 2022.
- B.R. Hunt & V.Y. Kaloshin. Regularity of Embeddings of Infinite-Dimensional Fractal Sets into Finite-Dimensional Spaces. Nonlinearity 12, pp. 1263-1275, 1999.
- J. Málek, M. Ruzicka & G. Thäter, *Fractal Dimension, Attractors and the Boussinesq Approximation in Three Dimensions*. Acta Applicandae Mathematicae **37**, pp. 83-97, 1994.

- R. Mañé, On the dimension of the compact invariant sets of certain nonlinear maps. Lecture Notes in Mathematics 898, Springer-Verlag, New York, pp. 230-242, 1981.
- J.C. Robinson, *Linear Embeddings of Finite-Dimensional Subsets of Banach Spaces into Euclidean Spaces*. Nonlinearity **22**, pp. 746-753, 2009.
- S. Zelik, The Attractor for a Nonlinear Reaction-Diffusion System with a Supercritical Nonlinearity and its Dimension. Rend. Accad. Naz. Sci. XL Mem. Mem. Math. Appl. 118, pp. 1-25, 2000.

05 a 07 de Novembro de 2025 Universidade Federal da Bahia - UFBA Salvador - Bahia

Submissão de trabalhos: 15 de junho a 31 de julho de 2025

Comitê Nacional

Haroldo Clark UFDPar

Sandra Malta

Joedson Santos

Comissão Organizadora

Arthur Cunha UFBA - Coordenador Local Carlos Raposo UFPA

Henrique Costa UFBA Joilson Ribeiro

Juan Gonzalez

Roseane Martins

Leandro Araújo UESB

Áreas

Análise Funcional Análise Numérica Equações Diferenciais Parciais Equações Diferenciais Ordinárias Equações Diferenciais Funcionais

> www.enama.org site

> > @enama.org instagram

> > > Saiba mais:

ANI ANI ANI

