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Phase Space

Phase space structures are a geometrical way to look into the
solutions of systems of differential equations.

This geometrical approach allows to recognize at a glance regions into
the phase space with distinct origins or fates.

This geometrical approach has an impact on the understanding of
transport in chemical reaction dynamics/geophysical flows.
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Langragian Descriptors

We obtain the phase space structures using the method of Lagrangian
Descriptors that is based on the function M.
The function M measures the length of the trajectory curve projected on
the phase space when it is evolved forward and backward in time a τ
interval.

Original Method-Arclength Definition (Madrid & Mancho 2009)

Scalar function measuring trajectory arclength starting at an initial
condition x0 = x(t0) as it evolves forward/backward for a time τ .

M(x0, t(0), τ) =

∫ t0+τ

t0−τ
||v(x(t; x0), t)||dt = M(f ) +M(b)
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Lagrangian Descriptors (p-norm Definition), p ∈ (0, 1]

Mp(x0, t0, τ) =

∫ t0+τ

t0−τ

N∑
i=1

|ẋi (t; x0)|pdt = M
(f )
p +M

(b)
p

Mathematical analysis of singular structures (non-differentiability and
relationship between LDs and invariant manifolds)
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Chemical Reaction Dynamics

Transition State Theory (1930s)- Determine Chemical Reaction Rates

Eyring, Polanyi and others - (Thermodynamics)

Wigner, ”Phase space is the arena for chemical reactions”

Goal

Search for Dividing Surface (DS) in phase space separating reactants from
products with minimal flux and no-recrossing properties
Flux across the dividing surface = chemical reaction rate

Lyapunov Subcenter Manifold Theorem

Normally Hyperbolic Invariant Manifolds (NHIMs) bifurcating from index-1
saddles provide scaffolding to construct the DS
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First Example (Chemical Reaction Dynamics)

Joint work with

Stephen Wiggins (University of Bristol, UK)

Victor Garcia Garrido (University of Alcala, Spain).
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Example: 4 well potential

The Hamiltonian:

H(x , y , px , py ) =
1

2
p2x +

1

2
p2y + V (x , y) , (1)

where the mass in each DoF is mx = my = 1, δ is the model parameter
representing the asymmetry in the double well potential of the x DoF, α
measures the barrier height corresponding to the potential of the x DoF,
and β represents the coupling strength between both DoF in the system.

The PES:

V (x , y) = x4 − αx2 − δx + y4 − y2 + βx2y2 . (2)
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The dynamical evolution of the Hamiltonian system in Eq. (1) takes place
in a four-dimensional phase space, and is determined by Hamilton’s
equations of motion:

ẋ =
∂H

∂px
= px

ẏ =
∂H

∂py
= py

ṗx = −∂H

∂x
= −∂V

∂x
= −4x3 + 2αx + δ − 2βxy2

ṗy = −∂H

∂y
= −∂V

∂y
= −4y3 + 2y − 2βx2y

. (3)
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Consider the symmetric and uncoupled system with energy H0. Since the
system is conservative, dynamics is constrained to the three-dimensional
energy hypersurface:

S(H0) =

{
(x , y , px , py ) ∈ R4

∣∣∣∣ H0 =
1

2

(
p2x + p2y

)
+ x4 − x2 + y4 − y2

}
,

(4)
and the total energy of the system can be split between both DoF to yield:

H(x , y , px , py ) = Hx(x , px) + Hy (y , py ) , (5)
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PES for the uncoupled and symmetric H.S.

Figure: Potential energy surface in Eq. (2) for the uncoupled (β = 0) and
symmetric (δ = 0) Hamiltonian system.
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A) B)

C)

Figure: Phase space structures of the linearized Hamiltonian given in the
neighborhood of the index-1 saddle xe = (0,

√
2/2, 0, 0). Panel A) depicts the

saddle space, B) is the center space, and C) represents the phase space
bottleneck in the vicinity of the index-1 saddle that allows transport, i.e. reaction,
from reactants to products.
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Goal

Our goal is to analyze, in terms of the model parameters, the geometrical
template of phase space structures, i.e. the underlying isomerization
pathways, that characterizes the dynamical behavior of the system.

Method

By applying the method of Lagrangian descriptors (LDs)
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A) B)

Figure: For the symmetric and uncoupled Hamiltonian system with energy
H0 = −0.15 in the neighborhood of the equilibrium point xe = (0,

√
2/2, 0, 0). A)

and B) depict the phase portraits in the x − px and y − py planes respectively.
We have marked with a magenta line the dividing surface x = 0 that separates
the upper-left and upper-right wells of the PES.
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For our analysis of the system, we fix a total energy of H0 and consider a
phase space slice that goes through the lower index-1 saddle of the PES:

P1 =
{
(x , y , px , py ) ∈ R4

∣∣ y = −1/
√
2 , py > 0

}
, (6)

and another Poincaré surface of section (PSOS) that coincides with the
configuration plane:

P2 =
{
(x , y , px , py ) ∈ R4

∣∣ px = 0 , py > 0
}

. (7)
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A) B)

C)

Figure: Phase space structures and evolution of initial conditions at H0 = −0.2.
A) LDs calculated using τ = 5 on the phase space slice in Eq. (6). B)
Superposition of LDs calculated using τ = 5 on the PSOS in Eq. (7) with the
dynamical evolution of the initial conditions selected in panel A. C) Visualization
of the phase space dynamics in the 3D energy hypersurface.
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Figure: Phase space structure at energy H0 = 0 for the symmetric and uncoupled
Hamiltonian, as revealed by Lagrangian descriptors using τ = 5 on the PSOS in
Eq. (6).
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A) B)

C)

Figure: Phase space structures and evolution of initial conditions at H0 = 0.2. A)
LDs calculated using τ = 5 on the phase space slice in Eq. (6). B) Superposition
of LDs calculated using τ = 5 on the PSOS in Eq. (7) with the dynamical
evolution of the initial conditions selected in panel A. C) Visualization of the
phase space dynamics in the 3D energy hypersurface.
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Asymmetric Case

A) B)

C) D)

E) F)

Figure: Potential energy surface landscape (left column) and equipotential curves
in configuration space (right column)
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A) B)

C) D)

E) F)

Figure: Potential energy for the x DoF and associated x − px phase portrait.
Makrina Agaoglou (UPM, Madrid) Short title 20 / 47



A) B) C)

Figure: Lagrangian descriptors calculated using p = 1/2 and τ = 5 on the surface
of section y = −

√
2/2 for the asymmetric uncoupled Hamiltonian system with

δ = 0.2. Energy levels: A) H0 = −0.2, which is below the energy of the left
index-1 saddle and above that of the bottom index-1 saddle; B) H0 = −0.1, that
is above the energy of the left index-1 saddle and below that of the index-2
saddle; C) H0 = 0.2, above the energy of the index-2 saddle.
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Coupled Case

A) B)

C)

Figure: Phase space structures on the surface of section given in Eq. (6) at an
energy H0 = −0.2 and dynamical evolution of initial conditions for the symmetric
and coupled Hamiltonian with α = 1, δ = 0 and β = 0.2. A) LDs calculated
using p = 1/2 and τ = 12. B) Poincaré map superimposed with the stable (blue)
and unstable (red) manifolds extracted from the gradient of the LD function. We
have also marked in the picture four different types of initial conditions. C)
Dynamical evolution of the initial conditions selected in panel B). In all diagrams
we have indicated the energy boundary with a magenta curve.
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Second Example (Oceanic modeling)

joint work with

Guillermo Garćıa-Sánchez (CTO of Digital Earth Solutions)

Evanne Marie Claire Smith (University of Bologna)

Ana M. Mancho (ICMAT, CSIC)
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Aims and scopes

Comparison of the transport performance of the analysis and
reanalysisis ocean models against observed drifters in a specific
domain in the North Atlantic

qualitative (LDs)
quantitative (LUQ)
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Figure: LUQ method

LUQ(t = t0) = ||x(t0 + τ)− p(t0 + τ)|| = ||xf0 − pf0 || (8)
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a) b)

Figure: LUQ method
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norm = max |pi − pj |,where i , j = 1, ..., n and i ̸= j (9)
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norm = max |pi − pj |,where i , j = 1, ..., n and i ̸= j (9)
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τ = 5 τ = 10 τ = 15

Radius=10 0.43333 0.61883 0.89682
Radius=30 0.52146 0.65785 0.82414
Radius=60 0.6871 0.80307 0.96242

τ = 5 τ = 10 τ = 15

Radius=10 0.46714 0.6646 0.93635
Radius=30 0.54436 0.6729 0.88899
Radius=60 0.71181 0.81433 0.98547

τ = 5 τ = 10 τ = 15

Radius=10 -0.033812 -0.045768 -0.039527
Radius=30 -0.022893 -0.015058 -0.064845
Radius=60 -0.024713 -0.01126 -0.023045

Table: Exp 1, Top table is analysis, middle table reanalysis, bottom table
difference analysis-reanalysis, t0 = 03/02/2019 12:00:00 over 22 days,norm max
= 77.2317 km

Makrina Agaoglou (UPM, Madrid) Short title 32 / 47



τ = 5 τ = 10 τ = 15

Radius=10 0.14123 0.23417 0.33554
Radius=30 0.15095 0.23654 0.34365
Radius=60 0.17401 0.262 0.36967

τ = 5 τ = 10 τ = 15

Radius=10 0.18467 0.26019 0.31986
Radius=30 0.18633 0.25373 0.31597
Radius=60 0.20849 0.27406 0.3537

τ = 5 τ = 10 τ = 15

Radius=10 -0.043438 -0.026019 0.015683
Radius=30 -0.035388 -0.017199 0.027678
Radius=60 -0.034481 -0.012063 0.015971

Table: Exp 2, Top table is analysis, middle table reanalysis, bottom table
difference analysis-reanalysis, t0 = 13/02/2019 12:00:00 over 22 days, norm max
= 709.5687 km
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τ = 5 τ = 10 τ = 15

Radius=10 0.47622 0.81484 1.0064
Radius=30 0.48378 0.85589 1.0822
Radius=60 0.50075 0.88593 1.1474
Radius=100 0.6013 0.98987 1.2466

τ = 5 τ = 10 τ = 15

Radius=10 0.15794 0.2011 0.14646
Radius=30 0.19921 0.27238 0.23547
Radius=60 0.32352 0.51573 0.58798
Radius=100 0.51583 0.7634 0.89678

τ = 5 τ = 10 τ = 15

Radius=10 0.31828 0.61374 0.85992
Radius=30 0.28458 0.58351 0.84673
Radius=60 0.17723 0.3702 0.55939
Radius=100 0.085473 0.22646 0.34986

Table: Exp 3, Top table is analysis, middle table reanalysis, bottom table
difference analysis-reanalysis, t0 = 22/01/2019 12:00:00 over 22 days, norm max
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While reanalysis tends to perform better in some cases also analysis is
performing very well.

Makrina Agaoglou (UPM, Madrid) Short title 35 / 47



Third example: New links between invariant dynamical
structures and uncertainty quantification

Joint work with

Stephen Wiggins (University of Bristol, UK)

Ana Maria Mancho (ICMAT, CSIC, Spain)

Guillermo Garćıa-Sánchez (CTO of Digital Earth Solutions)
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Second example: New links between invariant dynamical
structures and uncertainty quantification

With this example we propose a new uncertainty measure, appropriate
for quantifying the performance of transport models in assessing the
origin or source of a given observation.

It is found that in a neighbourhood of the observation the proposed
uncertainty measure is related to the invariant dynamical structures of
the model.
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Uncertainty Quantification in Backward Time

Our interest is in quantifying the uncertainty of a model for identifying a
target source x∗, which is consistent with a later observation x1 at time t1.
In this way, the target source, x∗, is located at an earlier time t∗ = t1 − τ .

LBUQ(X1, t1, τ, p) =
n∑

i=1

|xi (t1 − τ)− x∗i |
p , p ≤ 1, X0 ∈ Rn, τ > 0. (10)

where X1 represents a neighbourhood around the observation
x1 = (x1, x2, .., xn) at time t1 being n the dimension of the dynamical
system, which in our specific examples is n = 2. The coordinates of the
target are (x∗1 , x

∗
2 ), and uncertainty is provided in terms of a distance

metric between the target and the backward evolution of points near to x1
for a period τ .
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Simulations has demonstrated that the spill was closely following fluid
parcel trajectories x(t) that obeyed the equation:

dλ
dt = u(λ,ϕ,t)

R cosϕ
dϕ
dt = v(λ,ϕ,t)

R

where the position of the fluid parcel at the ocean surface is given in
longitude (λ) and latitude (ϕ), and R is the Earth’s radius. These u, v
velocity components are obtained as data sets from the Copernicus Marine
Monitoring Environmental Service (CMEMS).
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Models such as that given in the previous equations, possess a transport
signature based on invariant manifolds associated with hyperbolic
trajectories, which following Poincaré’s idea. These geometrical features
allow a more robust analysis of the transport capacity of ocean currents
than that based on individual trajectories.

In the context of geophysical flows, these geometrical structures are
referred to as Lagrangian Coherent Structures (LCSs). The use of LCS
allows a qualitative assessment of the performance of data sets, however,
definitions such as that BLUQ allow a quantitative analysis that we will
implement next in the context of the oil spill event described in. In this
work, we compute LCS using Lagrangian Descriptors.
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Figure: A graphical representation of the spills observed along the coastline of the
Eastern Mediterranean and satellite observations matching the sources.
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a) b)

c) d)

Figure: Evaluation on the 16th of February 2021 of LBUQ using the target,
x∗ = (34.36◦E, 31.78◦N) and of M(b) using τ = 16 days; a) LBUQ with the
CMEMS global product; b) M(b) with the CMEMS global product; c) LBUQ with
the CMEMS Mediterranean product; d) M(b) with the CMEMS Mediterranean
product.
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a) b)

c) d)

Figure: Evaluation on the 19th of February 2021 of LBUQ using the target,
x∗ = (34.32◦E, 31.35◦N) and of M(b) using τ = 25 days; a) LBUQ with the
CMEMS global product; b) M(b) with the CMEMS global product; c) LBUQ with
the CMEMS Mediterranean product; d) Mb with the CMEMS Mediterranean
product.
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a) b)

c) d)

Figure: Evaluation LBUQ on the Israel and Gaza coast for the close targets using
the global and the Mediterranean data. a) LBUQ on 16th of February 2021 using
the target, x∗ = (34.32◦E, 31.35◦N) on the CMEMS global product; a) LBUQ
with the CMEMS global product; b) M(b) with the CMEMS Mediterranean
product; c) LBUQ with the CMEMS global product; d) M(b) with the CMEMS
Mediterranean product.
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Conclusions

We have found that the defined quantity LBUQ , when evaluated in the
neighborhood of an observation with respect to its backward-in-time
target, has a structure which has been linked to the unstable invariant
manifolds of the hyperbolic trajectories present in the model vector
field. This link has been rigorously proven in a simple example, and
numerically verified in a real inspired case: the oil spill accident that
affected the Eastern Mediterranean in 2021.
The new definition, LBUQ , has been exploited to quantify the
performance of different CMEMS products to describe the sequence
of events regarding the oil spill accident in the Eastern Mediterranean
in 2021. In this event, some of the backward-in-time targets are very
far from the impact point, and their evolution involves mesoscale
structures, which our analysis shows are better represented in the
CMEMS global model. On the contrary for targets that are close,
involving submesoscale structures, on average the CMEMS
Mediterranean product performs better, although in some cases
CMEMS global product also performs well.
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New links between invariant dynamical structures and uncertainty
quantification, G. Garćıa Sánchez, A. M. Mancho, M. Agaoglou, S.
Wiggins, Physica D: Nonlinear Phenomena, Vol. 453, (2023)
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Thank you!

makrina.agaoglou@upm.es

https://makrinaagaoglou.wordpress.com/
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